Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Creating pull request for 10.21105.joss.06315 #6109

Closed
wants to merge 6 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
398 changes: 398 additions & 0 deletions joss.06315/10.21105.joss.06315.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,398 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20241109231254-87e77e4be7a19660f2ed03940144ed7b94615c66</doi_batch_id>
<timestamp>20241109231254</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>11</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>103</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>pySLM2: A full-stack python package for holographic
beam shaping</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Chung-You</given_name>
<surname>Shih</surname>
<affiliations>
<institution><institution_name>Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1, Canada</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0002-7561-6833</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Jingwen</given_name>
<surname>Zhu</surname>
<affiliations>
<institution><institution_name>Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1, Canada</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0009-0009-0699-8258</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Rajibul</given_name>
<surname>Islam</surname>
<affiliations>
<institution><institution_name>Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1, Canada</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0002-6483-8932</ORCID>
</person_name>
</contributors>
<publication_date>
<month>11</month>
<day>09</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6315</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06315</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.14025566</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6315</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06315</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06315</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06315.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="shih2021reprogrammable">
<article_title>Reprogrammable and high-precision holographic
optical addressing of trapped ions for scalable quantum
control</article_title>
<author>Shih</author>
<journal_title>npj Quantum Information</journal_title>
<issue>1</issue>
<volume>7</volume>
<doi>10.1038/s41534-021-00396-0</doi>
<cYear>2021</cYear>
<unstructured_citation>Shih, C.-Y., Motlakunta, S.,
Kotibhaskar, N., Sajjan, M., Hablützel, R., &amp; Islam, R. (2021).
Reprogrammable and high-precision holographic optical addressing of
trapped ions for scalable quantum control. Npj Quantum Information,
7(1), 57.
https://doi.org/10.1038/s41534-021-00396-0</unstructured_citation>
</citation>
<citation key="zupancic2016ultra">
<article_title>Ultra-precise holographic beam shaping for
microscopic quantum control</article_title>
<author>Zupancic</author>
<journal_title>Optics express</journal_title>
<issue>13</issue>
<volume>24</volume>
<doi>10.1364/OE.24.013881</doi>
<cYear>2016</cYear>
<unstructured_citation>Zupancic, P., Preiss, P. M., Ma, R.,
Lukin, A., Tai, M. E., Rispoli, M., Islam, R., &amp; Greiner, M. (2016).
Ultra-precise holographic beam shaping for microscopic quantum control.
Optics Express, 24(13), 13881–13893.
https://doi.org/10.1364/OE.24.013881</unstructured_citation>
</citation>
<citation key="lee1978iii">
<article_title>III computer-generated holograms: Techniques
and applications</article_title>
<author>Lee</author>
<journal_title>Progress in optics</journal_title>
<volume>16</volume>
<doi>10.1016/S0079-6638(08)70072-6</doi>
<cYear>1978</cYear>
<unstructured_citation>Lee, W.-H. (1978). III
computer-generated holograms: Techniques and applications. In Progress
in optics (Vol. 16, pp. 119–232). Elsevier.
https://doi.org/10.1016/S0079-6638(08)70072-6</unstructured_citation>
</citation>
<citation key="gerhberg1972practical">
<article_title>A practical algorithm for the determination
of phase from image and diffraction plane picture</article_title>
<author>Gerhberg</author>
<journal_title>Optik</journal_title>
<volume>35</volume>
<cYear>1972</cYear>
<unstructured_citation>Gerhberg, R., &amp; Saxton, W.
(1972). A practical algorithm for the determination of phase from image
and diffraction plane picture. Optik, 35, 237–246.
https://web.archive.org/web/20220505015731/http://www.u.arizona.edu/~ppoon/GerchbergandSaxton1972.pdf</unstructured_citation>
</citation>
<citation key="sebastien_m_popoff_2022_6121191">
<article_title>Wavefrontshaping/ALP4lib:
1.0.1</article_title>
<author>Popoff</author>
<doi>10.5281/zenodo.6121191</doi>
<cYear>2022</cYear>
<unstructured_citation>Popoff, S. M., Shih, G., B., D.,
&amp; GustavePariente. (2022). Wavefrontshaping/ALP4lib: 1.0.1 (Version
1.0.1). Zenodo.
https://doi.org/10.5281/zenodo.6121191</unstructured_citation>
</citation>
<citation key="gaunt2012robust">
<article_title>Robust digital holography for ultracold atom
trapping</article_title>
<author>Gaunt</author>
<journal_title>Scientific reports</journal_title>
<issue>1</issue>
<volume>2</volume>
<doi>10.1038/srep00721</doi>
<cYear>2012</cYear>
<unstructured_citation>Gaunt, A. L., &amp; Hadzibabic, Z.
(2012). Robust digital holography for ultracold atom trapping.
Scientific Reports, 2(1), 721.
https://doi.org/10.1038/srep00721</unstructured_citation>
</citation>
<citation key="qian2021super">
<article_title>Super-resolved imaging of a single cold atom
on a nanosecond timescale</article_title>
<author>Qian</author>
<journal_title>Physical review letters</journal_title>
<issue>26</issue>
<volume>127</volume>
<doi>10.1103/PhysRevLett.127.263603</doi>
<cYear>2021</cYear>
<unstructured_citation>Qian, Z.-H., Cui, J.-M., Luo, X.-W.,
Zheng, Y.-X., Huang, Y.-F., Ai, M.-Z., He, R., Li, C.-F., &amp; Guo,
G.-C. (2021). Super-resolved imaging of a single cold atom on a
nanosecond timescale. Physical Review Letters, 127(26), 263603.
https://doi.org/10.1103/PhysRevLett.127.263603</unstructured_citation>
</citation>
<citation key="drechsler2021optical">
<article_title>Optical superresolution sensing of a trapped
ion’s wave packet size</article_title>
<author>Drechsler</author>
<journal_title>Physical Review Letters</journal_title>
<issue>14</issue>
<volume>127</volume>
<doi>10.1103/PhysRevLett.127.143602</doi>
<cYear>2021</cYear>
<unstructured_citation>Drechsler, M., Wolf, S., Schmiegelow,
C. T., &amp; Schmidt-Kaler, F. (2021). Optical superresolution sensing
of a trapped ion’s wave packet size. Physical Review Letters, 127(14),
143602.
https://doi.org/10.1103/PhysRevLett.127.143602</unstructured_citation>
</citation>
<citation key="kotibhaskar2023programmable">
<article_title>Programmable XY-type couplings through
parallel spin-dependent forces on the same trapped ion motional
modes</article_title>
<author>Kotibhaskar</author>
<journal_title>arXiv preprint
arXiv:2307.04922</journal_title>
<doi>10.1103/PhysRevResearch.6.033038</doi>
<cYear>2023</cYear>
<unstructured_citation>Kotibhaskar, N., Shih, C.-Y.,
Motlakunta, S., Vogliano, A., Hahn, L., Chen, Y.-T., &amp; Islam, R.
(2023). Programmable XY-type couplings through parallel spin-dependent
forces on the same trapped ion motional modes. arXiv Preprint
arXiv:2307.04922.
https://doi.org/10.1103/PhysRevResearch.6.033038</unstructured_citation>
</citation>
<citation key="andersen2006quantized">
<article_title>Quantized rotation of atoms from photons with
orbital angular momentum</article_title>
<author>Andersen</author>
<journal_title>Physical review letters</journal_title>
<issue>17</issue>
<volume>97</volume>
<doi>10.1103/PhysRevLett.97.170406</doi>
<cYear>2006</cYear>
<unstructured_citation>Andersen, M., Ryu, C., Cladé, P.,
Natarajan, V., Vaziri, A., Helmerson, K., &amp; Phillips, W. D. (2006).
Quantized rotation of atoms from photons with orbital angular momentum.
Physical Review Letters, 97(17), 170406.
https://doi.org/10.1103/PhysRevLett.97.170406</unstructured_citation>
</citation>
<citation key="kuga1997novel">
<article_title>Novel optical trap of atoms with a doughnut
beam</article_title>
<author>Kuga</author>
<journal_title>Physical Review Letters</journal_title>
<issue>25</issue>
<volume>78</volume>
<doi>10.1103/PhysRevLett.78.4713</doi>
<cYear>1997</cYear>
<unstructured_citation>Kuga, T., Torii, Y., Shiokawa, N.,
Hirano, T., Shimizu, Y., &amp; Sasada, H. (1997). Novel optical trap of
atoms with a doughnut beam. Physical Review Letters, 78(25), 4713.
https://doi.org/10.1103/PhysRevLett.78.4713</unstructured_citation>
</citation>
<citation key="obata2010multi">
<article_title>Multi-focus two-photon polymerization
technique based on individually controlled phase
modulation</article_title>
<author>Obata</author>
<journal_title>Optics express</journal_title>
<issue>16</issue>
<volume>18</volume>
<doi>10.1364/OE.18.017193</doi>
<cYear>2010</cYear>
<unstructured_citation>Obata, K., Koch, J., Hinze, U., &amp;
Chichkov, B. N. (2010). Multi-focus two-photon polymerization technique
based on individually controlled phase modulation. Optics Express,
18(16), 17193–17200.
https://doi.org/10.1364/OE.18.017193</unstructured_citation>
</citation>
<citation key="islam2015measuring">
<article_title>Measuring entanglement entropy in a quantum
many-body system</article_title>
<author>Islam</author>
<journal_title>Nature</journal_title>
<issue>7580</issue>
<volume>528</volume>
<doi>10.1038/nature15750</doi>
<cYear>2015</cYear>
<unstructured_citation>Islam, R., Ma, R., Preiss, P. M.,
Eric Tai, M., Lukin, A., Rispoli, M., &amp; Greiner, M. (2015).
Measuring entanglement entropy in a quantum many-body system. Nature,
528(7580), 77–83.
https://doi.org/10.1038/nature15750</unstructured_citation>
</citation>
<citation key="shack1971production">
<article_title>Production and use of a lenticular hartmann
screen</article_title>
<author>Shack</author>
<journal_title>Spring meeting of optical society of america,
1971</journal_title>
<volume>656</volume>
<doi>10.1364/JOSA.61.000648</doi>
<cYear>1971</cYear>
<unstructured_citation>Shack, R. V. (1971). Production and
use of a lenticular hartmann screen. Spring Meeting of Optical Society
of America, 1971, 656.
https://doi.org/10.1364/JOSA.61.000648</unstructured_citation>
</citation>
<citation key="Paschottashack_hartmann_wavefront_sensors">
<article_title>Shack–hartmann wavefront
sensors</article_title>
<author>Paschotta</author>
<doi>10.61835/jcv</doi>
<unstructured_citation>Paschotta, R. Shack–hartmann
wavefront sensors. RP Photonics Encyclopedia; RP Photonics AG.
https://doi.org/10.61835/jcv</unstructured_citation>
</citation>
<citation key="cupy_learningsys2017">
<article_title>CuPy: A NumPy-compatible library for NVIDIA
GPU calculations</article_title>
<author>Okuta</author>
<journal_title>Proceedings of workshop on machine learning
systems (LearningSys) in the thirty-first annual conference on neural
information processing systems (NIPS)</journal_title>
<cYear>2017</cYear>
<unstructured_citation>Okuta, R., Unno, Y., Nishino, D.,
Hido, S., &amp; Loomis, C. (2017). CuPy: A NumPy-compatible library for
NVIDIA GPU calculations. Proceedings of Workshop on Machine Learning
Systems (LearningSys) in the Thirty-First Annual Conference on Neural
Information Processing Systems (NIPS).
http://learningsys.org/nips17/assets/papers/paper_16.pdf</unstructured_citation>
</citation>
<citation key="yamamoto2021gradient">
<article_title>Gradient-based optimization of
time-multiplexed binary computer-generated holograms by digital mirror
device</article_title>
<author>Yamamoto</author>
<journal_title>Digital holography and three-dimensional
imaging</journal_title>
<doi>10.1364/DH.2021.DTh7C.1</doi>
<cYear>2021</cYear>
<unstructured_citation>Yamamoto, K., &amp; Ochiai, Y.
(2021). Gradient-based optimization of time-multiplexed binary
computer-generated holograms by digital mirror device. Digital
Holography and Three-Dimensional Imaging, DTh7C–1.
https://doi.org/10.1364/DH.2021.DTh7C.1</unstructured_citation>
</citation>
<citation key="matthes2019optical">
<article_title>Optical complex media as universal
reconfigurable linear operators</article_title>
<author>Matthès</author>
<journal_title>Optica</journal_title>
<issue>4</issue>
<volume>6</volume>
<doi>10.1364/OPTICA.6.000465</doi>
<cYear>2019</cYear>
<unstructured_citation>Matthès, M. W., Del Hougne, P., De
Rosny, J., Lerosey, G., &amp; Popoff, S. M. (2019). Optical complex
media as universal reconfigurable linear operators. Optica, 6(4),
465–472. https://doi.org/10.1364/OPTICA.6.000465</unstructured_citation>
</citation>
<citation key="pasienski2008high">
<article_title>A high-accuracy algorithm for designing
arbitrary holographic atom traps</article_title>
<author>Pasienski</author>
<journal_title>Optics express</journal_title>
<issue>3</issue>
<volume>16</volume>
<doi>10.1364/OE.16.002176</doi>
<cYear>2008</cYear>
<unstructured_citation>Pasienski, M., &amp; DeMarco, B.
(2008). A high-accuracy algorithm for designing arbitrary holographic
atom traps. Optics Express, 16(3), 2176–2190.
https://doi.org/10.1364/OE.16.002176</unstructured_citation>
</citation>
<citation key="motlakunta2024">
<article_title>Preserving a qubit during state-destroying
operations on an adjacent qubit at a few micrometers
distance</article_title>
<author>Motlakunta</author>
<journal_title>Nature Communications</journal_title>
<issue>1</issue>
<volume>15</volume>
<doi>10.1038/s41467-024-50864-2</doi>
<issn>2041-1723</issn>
<cYear>2024</cYear>
<unstructured_citation>Motlakunta, S., Kotibhaskar, N.,
Shih, C.-Y., Vogliano, A., McLaren, D., Hahn, L., Zhu, J., Hablützel,
R., &amp; Islam, R. (2024). Preserving a qubit during state-destroying
operations on an adjacent qubit at a few micrometers distance. Nature
Communications, 15(1), 6575.
https://doi.org/10.1038/s41467-024-50864-2</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06315/10.21105.joss.06315.pdf
Binary file not shown.
Loading