Official repository for the paper Efficient Probabilistic Modeling of Crystallization at Mesoscopic Scale: https://arxiv.org/abs/2405.16608
- Python 3.10
- PyTorch
- Lightning
- NumPy
- H5Py
- PyYAML (for configuration files)
- Wandb (for logging)
- einops (for logging)
- POT (for calculation of Wasserstein distance)
- CUDA compatible GPU
- Python 3.10
- NumPy
- Numba
- H5Py
- PyYAML
- Matplotlib
To train the model, run the following command:
python -m CGNE.train --config config.yaml
where config.yaml
is the configuration file. A configuration file with default values is provided in configs/default.yaml
.
Any configuration parameter can be overridden by adding it to the configuration file. For example:
model:
z_dim: 128
data:
batch_size: 64
To run the LCA simulation, run the following command:
python -m LCA.main
This accepts command line arguments, as well as a configuration file.
If you use this code, please cite the following paper:
@misc{timmer2024efficient,
title={Efficient Probabilistic Modeling of Crystallization at Mesoscopic Scale},
author={Pol Timmer and Koen Minartz and Vlado Menkovski},
year={2024},
eprint={2405.16608},
archivePrefix={arXiv},
primaryClass={cs.LG}
}