Skip to content
/ CGNE Public

Official repository for the paper Efficient Probabilistic Modeling of Crystallization at Mesoscopic Scale

License

Notifications You must be signed in to change notification settings

poltimmer/CGNE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CGNE (Crystal Growth Neural Emulator)

Official repository for the paper Efficient Probabilistic Modeling of Crystallization at Mesoscopic Scale: https://arxiv.org/abs/2405.16608

Requirements

CGNE

  • Python 3.10
  • PyTorch
  • Lightning
  • NumPy
  • H5Py
  • PyYAML (for configuration files)
  • Wandb (for logging)
  • einops (for logging)
  • POT (for calculation of Wasserstein distance)

LCA

  • CUDA compatible GPU
  • Python 3.10
  • NumPy
  • Numba
  • H5Py
  • PyYAML
  • Matplotlib

Usage

CGNE

To train the model, run the following command:

python -m CGNE.train --config config.yaml

where config.yaml is the configuration file. A configuration file with default values is provided in configs/default.yaml.

Any configuration parameter can be overridden by adding it to the configuration file. For example:

model:
  z_dim: 128
data:
  batch_size: 64

LCA

To run the LCA simulation, run the following command:

python -m LCA.main

This accepts command line arguments, as well as a configuration file.

Citation

If you use this code, please cite the following paper:

@misc{timmer2024efficient,
      title={Efficient Probabilistic Modeling of Crystallization at Mesoscopic Scale}, 
      author={Pol Timmer and Koen Minartz and Vlado Menkovski},
      year={2024},
      eprint={2405.16608},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

About

Official repository for the paper Efficient Probabilistic Modeling of Crystallization at Mesoscopic Scale

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages