-
Notifications
You must be signed in to change notification settings - Fork 280
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
remove mirdata inline import from guitarset bc unnecessary, add ikala…
… dataset file, test file, add as option to download.py, black formatting
- Loading branch information
Showing
5 changed files
with
294 additions
and
9 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
#!/usr/bin/env python | ||
# encoding: utf-8 | ||
# | ||
# Copyright 2022 Spotify AB | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import argparse | ||
import logging | ||
import os | ||
import random | ||
import sys | ||
import time | ||
from typing import Any, Dict, List, Tuple, Optional | ||
|
||
import apache_beam as beam | ||
import mirdata | ||
|
||
from basic_pitch.data import commandline, pipeline | ||
from basic_pitch.data.datasets import DOWNLOAD | ||
|
||
|
||
class IkalaInvalidTracks(beam.DoFn): | ||
def process(self, element: Tuple[str, str], *args: Tuple[Any, Any], **kwargs: Dict[str, Any]) -> Any: | ||
track_id, split = element | ||
yield beam.pvalue.TaggedOutput(split, track_id) | ||
|
||
|
||
class IkalaToTfExample(beam.DoFn): | ||
DOWNLOAD_ATTRIBUTES = ["audio_path", "notes_pyin_path", "f0_path"] | ||
|
||
def __init__(self, source: str, download: bool) -> None: | ||
self.source = source | ||
self.download = download | ||
|
||
def setup(self) -> None: | ||
import apache_beam as beam | ||
import os | ||
import mirdata | ||
|
||
self.ikala_remote = mirdata.initialize("ikala", data_home=os.path.join(self.source, "iKala")) | ||
self.filesystem = beam.io.filesystems.FileSystems() # TODO: replace with fsspec | ||
if self.download: | ||
self.ikala_remote.download() | ||
|
||
def process(self, element: List[str], *args: Tuple[Any, Any], **kwargs: Dict[str, Any]) -> List[Any]: | ||
import tempfile | ||
|
||
import numpy as np | ||
import sox | ||
|
||
from basic_pitch.constants import ( | ||
AUDIO_N_CHANNELS, | ||
AUDIO_SAMPLE_RATE, | ||
FREQ_BINS_CONTOURS, | ||
FREQ_BINS_NOTES, | ||
ANNOTATION_HOP, | ||
N_FREQ_BINS_CONTOURS, | ||
N_FREQ_BINS_NOTES, | ||
) | ||
from basic_pitch.data import tf_example_serialization | ||
|
||
logging.info(f"Processing {element}") | ||
batch = [] | ||
|
||
for track_id in element: | ||
track_remote = self.ikala_remote.track(track_id) | ||
with tempfile.TemporaryDirectory() as local_tmp_dir: | ||
ikala_local = mirdata.initialize("ikala", local_tmp_dir) | ||
track_local = ikala_local.track(track_id) | ||
|
||
for attr in self.DOWNLOAD_ATTRIBUTES: | ||
source = getattr(track_remote, attr) | ||
dest = getattr(track_local, attr) | ||
os.makedirs(os.path.dirname(dest), exist_ok=True) | ||
with self.filesystem.open(source) as s, open(dest, "wb") as d: | ||
d.write(s.read()) | ||
|
||
local_wav_path = "{}_tmp.wav".format(track_local.audio_path) | ||
|
||
tfm = sox.Transformer() | ||
tfm.rate(AUDIO_SAMPLE_RATE) | ||
tfm.remix({1: [2]}) | ||
tfm.channels(AUDIO_N_CHANNELS) | ||
tfm.build(track_local.audio_path, local_wav_path) | ||
|
||
duration = sox.file_info.duration(local_wav_path) | ||
time_scale = np.arange(0, duration + ANNOTATION_HOP, ANNOTATION_HOP) | ||
n_time_frames = len(time_scale) | ||
|
||
if track_local.notes_pyin is not None: | ||
note_indices, note_values = track_local.notes_pyin.to_sparse_index( | ||
time_scale, "s", FREQ_BINS_NOTES, "hz" | ||
) | ||
onset_indices, onset_values = track_local.notes_pyin.to_sparse_index( | ||
time_scale, "s", FREQ_BINS_NOTES, "hz", onsets_only=True | ||
) | ||
note_shape = (n_time_frames, N_FREQ_BINS_NOTES) | ||
# if there are no notes, return empty note indices | ||
else: | ||
note_indices = [] | ||
onset_indices = [] | ||
note_values = [] | ||
onset_values = [] | ||
note_shape = (0, 0) | ||
|
||
contour_indices, contour_values = track_local.f0.to_sparse_index( | ||
time_scale, "s", FREQ_BINS_CONTOURS, "hz" | ||
) | ||
|
||
batch.append( | ||
tf_example_serialization.to_transcription_tfexample( | ||
track_id, | ||
"ikala", | ||
local_wav_path, | ||
note_indices, | ||
note_values, | ||
onset_indices, | ||
onset_values, | ||
contour_indices, | ||
contour_values, | ||
note_shape, | ||
(n_time_frames, N_FREQ_BINS_CONTOURS), | ||
) | ||
) | ||
return [batch] | ||
|
||
|
||
def create_input_data(train_percent: float, seed: Optional[int] = None) -> List[Tuple[str, str]]: | ||
assert train_percent < 1.0, "Don't over allocate the data!" | ||
|
||
# Test percent is 1 - train - validation | ||
validation_bound = train_percent | ||
|
||
if seed: | ||
random.seed(seed) | ||
|
||
def determine_split() -> str: | ||
partition = random.uniform(0, 1) | ||
if partition < validation_bound: | ||
return "train" | ||
return "validation" | ||
|
||
ikala = mirdata.initialize("ikala") | ||
|
||
return [(track_id, determine_split()) for track_id in ikala.track_ids] | ||
|
||
|
||
def main(known_args: argparse.Namespace, pipeline_args: List[str]) -> None: | ||
time_created = int(time.time()) | ||
destination = commandline.resolve_destination(known_args, time_created) | ||
|
||
pipeline_options = { | ||
"runner": known_args.runner, | ||
"job_name": f"ikala-tfrecords-{time_created}", | ||
"machine_type": "e2-standard-4", | ||
"num_workers": 25, | ||
"disk_size_gb": 128, | ||
"experiments": ["use_runner_v2", "no_use_multiple_sdk_containers"], | ||
"save_main_session": True, | ||
"worker_harness_container_image": known_args.worker_harness_container_image, | ||
} | ||
input_data = create_input_data(known_args.train_percent, known_args.split_seed) | ||
pipeline.run( | ||
pipeline_options, | ||
input_data, | ||
IkalaToTfExample(known_args.source, DOWNLOAD), | ||
IkalaInvalidTracks(known_args.source), | ||
destination, | ||
known_args.batch_size, | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
commandline.add_default(parser, os.path.basename(os.path.splitext(__file__)[0])) | ||
commandline.add_split(parser) | ||
known_args, pipeline_args = parser.parse_known_args(sys.argv) | ||
|
||
main(known_args, pipeline_args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
#!/usr/bin/env python | ||
# encoding: utf-8 | ||
# | ||
# Copyright 2022 Spotify AB | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import apache_beam as beam | ||
import itertools | ||
import os | ||
|
||
from apache_beam.testing.test_pipeline import TestPipeline | ||
|
||
from basic_pitch.data.datasets.ikala import ( | ||
IkalaInvalidTracks, | ||
create_input_data, | ||
) | ||
|
||
|
||
def test_guitar_set_to_tf_example(tmpdir: str) -> None: | ||
# TODO: Acquire test data | ||
pass | ||
|
||
|
||
def test_ikala_invalid_tracks(tmpdir: str) -> None: | ||
split_labels = ["train", "validation"] | ||
input_data = [(str(i), split) for i, split in enumerate(split_labels)] | ||
with TestPipeline() as p: | ||
splits = ( | ||
p | ||
| "Create PCollection" >> beam.Create(input_data) | ||
| "Tag it" >> beam.ParDo(IkalaInvalidTracks()).with_outputs(*split_labels) | ||
) | ||
|
||
for split in split_labels: | ||
( | ||
getattr(splits, split) | ||
| f"Write {split} to text" | ||
>> beam.io.WriteToText(os.path.join(tmpdir, f"output_{split}.txt"), shard_name_template="") | ||
) | ||
|
||
for i, split in enumerate(split_labels): | ||
with open(os.path.join(tmpdir, f"output_{split}.txt"), "r") as fp: | ||
assert fp.read().strip() == str(i) | ||
|
||
|
||
def test_create_input_data() -> None: | ||
data = create_input_data(train_percent=0.5) | ||
data.sort(key=lambda el: el[1]) # sort by split | ||
tolerance = 0.05 | ||
for key, group in itertools.groupby(data, lambda el: el[1]): | ||
assert (0.5 - tolerance) * len(data) <= len(list(group)) <= (0.5 + tolerance) * len(data) | ||
|
||
|
||
def test_create_input_data_overallocate() -> None: | ||
try: | ||
create_input_data(train_percent=1.1) | ||
except AssertionError: | ||
assert True | ||
else: | ||
assert False |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters