-
Notifications
You must be signed in to change notification settings - Fork 280
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
updated tolerance for ikala, test names for ikala and guitarset, adde…
…d data and tests + uploaded download.py for maestro, added test data for maestro, updated Manifest for wav and midi files in test
- Loading branch information
1 parent
91d220b
commit 62634f9
Showing
15 changed files
with
1,659 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,6 @@ | ||
include *.txt tox.ini *.rst *.md LICENSE | ||
include catalog-info.yaml | ||
include Dockerfile .dockerignore | ||
recursive-include tests *.py *.wav *.npz *.jams *.zip | ||
recursive-include tests *.py *.wav *.npz *.jams *.zip *.midi *.csv *.json | ||
recursive-include basic_pitch *.py *.md | ||
recursive-include basic_pitch/saved_models *.index *.pb variables.data* *.mlmodel *.json *.onnx *.tflite *.bin |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,223 @@ | ||
#!/usr/bin/env python | ||
# encoding: utf-8 | ||
# | ||
# Copyright 2024 Spotify AB | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import argparse | ||
import logging | ||
import os | ||
import sys | ||
import tempfile | ||
import time | ||
from typing import Any, Dict, List, TextIO, Tuple | ||
|
||
import apache_beam as beam | ||
import mirdata | ||
|
||
from basic_pitch.data import commandline, pipeline | ||
|
||
|
||
def read_in_chunks(file_object: TextIO, chunk_size: int = 1024) -> Any: | ||
"""Lazy function (generator) to read a file piece by piece. | ||
Default chunk size: 1k.""" | ||
while True: | ||
data = file_object.read(chunk_size) | ||
if not data: | ||
break | ||
yield data | ||
|
||
|
||
class MaestroInvalidTracks(beam.DoFn): | ||
DOWNLOAD_ATTRIBUTES = ["audio_path"] | ||
|
||
def __init__(self, source: str) -> None: | ||
self.source = source | ||
|
||
def setup(self) -> None: | ||
# Oddly enough we dont want to include the gcs bucket uri. | ||
# Just the path within the bucket | ||
self.maestro_remote = mirdata.initialize("maestro", data_home=self.source) | ||
self.filesystem = beam.io.filesystems.FileSystems() | ||
|
||
def process(self, element: Tuple[str, str], *args: Tuple[Any, Any], **kwargs: Dict[str, Any]) -> Any: | ||
import tempfile | ||
import sox | ||
|
||
track_id, split = element | ||
logging.info(f"Processing (track_id, split): ({track_id}, {split})") | ||
|
||
track_remote = self.maestro_remote.track(track_id) | ||
with tempfile.TemporaryDirectory() as local_tmp_dir: | ||
maestro_local = mirdata.initialize("maestro", local_tmp_dir) | ||
track_local = maestro_local.track(track_id) | ||
|
||
for attribute in self.DOWNLOAD_ATTRIBUTES: | ||
source = getattr(track_remote, attribute) | ||
destination = getattr(track_local, attribute) | ||
os.makedirs(os.path.dirname(destination), exist_ok=True) | ||
with self.filesystem.open(source) as s, open(destination, "wb") as d: | ||
for piece in read_in_chunks(s): | ||
d.write(piece) | ||
|
||
# 15 minutes * 60 seconds/minute | ||
if sox.file_info.duration(track_local.audio_path) >= 15 * 60: | ||
return None | ||
|
||
yield beam.pvalue.TaggedOutput(split, track_id) | ||
|
||
|
||
class MaestroToTfExample(beam.DoFn): | ||
DOWNLOAD_ATTRIBUTES = ["audio_path", "midi_path"] | ||
|
||
def __init__(self, source: str, download: bool): | ||
self.source = source | ||
self.download = download | ||
|
||
def setup(self) -> None: | ||
import apache_beam as beam | ||
import mirdata | ||
|
||
# Oddly enough we dont want to include the gcs bucket uri. | ||
# Just the path within the bucket | ||
self.maestro_remote = mirdata.initialize("maestro", data_home=self.source) | ||
self.filesystem = beam.io.filesystems.FileSystems() | ||
if self.download: | ||
self.maestro_remote.download() | ||
|
||
def process(self, element: List[str], *args: Tuple[Any, Any], **kwargs: Dict[str, Any]) -> List[Any]: | ||
import tempfile | ||
|
||
import numpy as np | ||
import sox | ||
|
||
from basic_pitch.constants import ( | ||
AUDIO_N_CHANNELS, | ||
AUDIO_SAMPLE_RATE, | ||
FREQ_BINS_CONTOURS, | ||
FREQ_BINS_NOTES, | ||
ANNOTATION_HOP, | ||
N_FREQ_BINS_NOTES, | ||
N_FREQ_BINS_CONTOURS, | ||
) | ||
from basic_pitch.data import tf_example_serialization | ||
|
||
logging.info(f"Processing {element}") | ||
batch = [] | ||
|
||
for track_id in element: | ||
track_remote = self.maestro_remote.track(track_id) | ||
with tempfile.TemporaryDirectory() as local_tmp_dir: | ||
maestro_local = mirdata.initialize("maestro", local_tmp_dir) | ||
track_local = maestro_local.track(track_id) | ||
|
||
for attribute in self.DOWNLOAD_ATTRIBUTES: | ||
source = getattr(track_remote, attribute) | ||
destination = getattr(track_local, attribute) | ||
os.makedirs(os.path.dirname(destination), exist_ok=True) | ||
with self.filesystem.open(source) as s, open(destination, "wb") as d: | ||
# d.write(s.read()) | ||
for piece in read_in_chunks(s): | ||
d.write(piece) | ||
|
||
local_wav_path = f"{track_local.audio_path}_tmp.wav" | ||
|
||
tfm = sox.Transformer() | ||
tfm.rate(AUDIO_SAMPLE_RATE) | ||
tfm.channels(AUDIO_N_CHANNELS) | ||
tfm.build(track_local.audio_path, local_wav_path) | ||
|
||
duration = sox.file_info.duration(local_wav_path) | ||
time_scale = np.arange(0, duration + ANNOTATION_HOP, ANNOTATION_HOP) | ||
n_time_frames = len(time_scale) | ||
|
||
note_indices, note_values = track_local.notes.to_sparse_index(time_scale, "s", FREQ_BINS_NOTES, "hz") | ||
onset_indices, onset_values = track_local.notes.to_sparse_index( | ||
time_scale, "s", FREQ_BINS_NOTES, "hz", onsets_only=True | ||
) | ||
contour_indices, contour_values = track_local.notes.to_sparse_index( | ||
time_scale, "s", FREQ_BINS_CONTOURS, "hz" | ||
) | ||
|
||
batch.append( | ||
tf_example_serialization.to_transcription_tfexample( | ||
track_local.track_id, | ||
"maestro", | ||
local_wav_path, | ||
note_indices, | ||
note_values, | ||
onset_indices, | ||
onset_values, | ||
contour_indices, | ||
contour_values, | ||
(n_time_frames, N_FREQ_BINS_NOTES), | ||
(n_time_frames, N_FREQ_BINS_CONTOURS), | ||
) | ||
) | ||
return [batch] | ||
|
||
|
||
def create_input_data(source: str) -> List[Tuple[str, str]]: | ||
import apache_beam as beam | ||
|
||
filesystem = beam.io.filesystems.FileSystems() | ||
|
||
with tempfile.TemporaryDirectory() as tmpdir: | ||
maestro = mirdata.initialize("maestro", data_home=tmpdir) | ||
metadata_path = maestro._index["metadata"]["maestro-v2.0.0"][0] | ||
with filesystem.open( | ||
os.path.join(source, metadata_path), | ||
) as s, open(os.path.join(tmpdir, metadata_path), "wb") as d: | ||
d.write(s.read()) | ||
|
||
return [(track_id, track.split) for track_id, track in maestro.load_tracks().items()] | ||
|
||
|
||
def main(known_args: argparse.Namespace, pipeline_args: List[str]) -> None: | ||
time_created = int(time.time()) | ||
destination = commandline.resolve_destination(known_args, time_created) | ||
|
||
# TODO: Remove or abstract for foss | ||
pipeline_options = { | ||
"runner": known_args.runner, | ||
"job_name": f"maestro-tfrecords-{time_created}", | ||
"machine_type": "e2-highmem-4", | ||
"num_workers": 25, | ||
"disk_size_gb": 128, | ||
"experiments": ["use_runner_v2", "no_use_multiple_sdk_containers"], | ||
"save_main_session": True, | ||
"sdk_container_image": known_args.sdk_container_image, | ||
"job_endpoint": known_args.job_endpoint, | ||
"environment_type": "DOCKER", | ||
"environment_config": known_args.sdk_container_image, | ||
} | ||
input_data = create_input_data(known_args.source) | ||
pipeline.run( | ||
pipeline_options, | ||
pipeline_args, | ||
input_data, | ||
MaestroToTfExample(known_args.source, download=True), | ||
MaestroInvalidTracks(known_args.source), | ||
destination, | ||
known_args.batch_size, | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
commandline.add_default(parser, os.path.basename(os.path.splitext(__file__)[0])) | ||
commandline.add_split(parser) | ||
known_args, pipeline_args = parser.parse_known_args(sys.argv) | ||
|
||
main(known_args, pipeline_args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.