A drop-in replacement for dplyr, powered by DuckDB for fast operation.
dplyr is the grammar of data manipulation in the tidyverse. The duckplyr package will run all of your existing dplyr code with identical results, using DuckDB where possible to compute the results faster. In addition, you can analyze larger-than-memory datasets straight from files on your disk or from the web. If you are new to dplyr, the best place to start is the data transformation chapter in R for Data Science.
Install duckplyr from CRAN with:
install.packages("duckplyr")
You can also install the development version of duckplyr from R-universe:
install.packages("duckplyr", repos = c("https://tidyverse.r-universe.dev", "https://cloud.r-project.org"))
Or from GitHub with:
# install.packages("pak")
pak::pak("tidyverse/duckplyr")
Calling library(duckplyr)
overwrites dplyr methods, enabling duckplyr
for the entire session.
library(conflicted)
library(duckplyr)
#> ✔ Overwriting dplyr methods with duckplyr methods.
#> ℹ Turn off with `duckplyr::methods_restore()`.
conflict_prefer("filter", "dplyr", quiet = TRUE)
The following code aggregates the inflight delay by year and month for
the first half of the year. We use a variant of the
nycflights13::flights
dataset that works around an incompatibility
with duckplyr.
flights_df()
#> # A tibble: 336,776 × 19
#> year month day dep_time sched_de…¹ dep_d…² arr_t…³ sched…⁴ arr_d…⁵ carrier
#> <int> <int> <int> <int> <int> <dbl> <int> <int> <dbl> <chr>
#> 1 2013 1 1 517 515 2 830 819 11 UA
#> 2 2013 1 1 533 529 4 850 830 20 UA
#> 3 2013 1 1 542 540 2 923 850 33 AA
#> 4 2013 1 1 544 545 -1 1004 1022 -18 B6
#> 5 2013 1 1 554 600 -6 812 837 -25 DL
#> 6 2013 1 1 554 558 -4 740 728 12 UA
#> 7 2013 1 1 555 600 -5 913 854 19 B6
#> 8 2013 1 1 557 600 -3 709 723 -14 EV
#> 9 2013 1 1 557 600 -3 838 846 -8 B6
#> 10 2013 1 1 558 600 -2 753 745 8 AA
#> # ℹ 336,766 more rows
#> # ℹ abbreviated names: ¹sched_dep_time, ²dep_delay, ³arr_time, ⁴sched_arr_time,
#> # ⁵arr_delay
#> # ℹ 9 more variables: flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
#> # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
out <-
flights_df() %>%
filter(!is.na(arr_delay), !is.na(dep_delay)) %>%
mutate(inflight_delay = arr_delay - dep_delay) %>%
summarize(
.by = c(year, month),
mean_inflight_delay = mean(inflight_delay),
median_inflight_delay = median(inflight_delay),
) %>%
filter(month <= 6)
The result is a plain tibble:
class(out)
#> [1] "tbl_df" "tbl" "data.frame"
Nothing has been computed yet. Querying the number of rows, or a column, starts the computation:
out$month
#> [1] 1 2 3 4 5 6
Note that, unlike dplyr, the results are not ordered, see ?config
for
details. However, once materialized, the results are stable:
out
#> # A tibble: 6 × 4
#> year month mean_inflight_delay median_inflight_delay
#> <int> <int> <dbl> <dbl>
#> 1 2013 1 -3.86 -5
#> 2 2013 2 -5.15 -6
#> 3 2013 3 -7.36 -9
#> 4 2013 4 -2.67 -5
#> 5 2013 5 -9.37 -10
#> 6 2013 6 -4.24 -7
Restart R, or call duckplyr::methods_restore()
to revert to the
default dplyr implementation.
duckplyr::methods_restore()
#> ℹ Restoring dplyr methods.
An extended variant of this dataset is also available for download as Parquet files.
year <- 2022:2024
base_url <- "https://blobs.duckdb.org/flight-data-partitioned/"
files <- paste0("Year=", year, "/data_0.parquet")
urls <- paste0(base_url, files)
urls
#> [1] "https://blobs.duckdb.org/flight-data-partitioned/Year=2022/data_0.parquet"
#> [2] "https://blobs.duckdb.org/flight-data-partitioned/Year=2023/data_0.parquet"
#> [3] "https://blobs.duckdb.org/flight-data-partitioned/Year=2024/data_0.parquet"
Using the httpfs DuckDB extension, we can query these files directly from R, without even downloading them first.
duck_exec("INSTALL httpfs")
duck_exec("LOAD httpfs")
flights <- duck_parquet(urls)
Unlike with local data frames, the default is to disallow automatic materialization of the results on access.
nrow(flights)
#> Error: Materialization is disabled, use collect() or as_tibble() to materialize
Queries on the remote data are executed lazily, and the results are not materialized until explicitly requested. For printing, only the first few rows of the result are fetched.
flights
#> # A duckplyr data frame: 110 variables
#> Year Quarter Month DayofMonth DayOfWeek FlightDate Reporti…¹ DOT_I…² IATA_…³
#> <dbl> <dbl> <dbl> <dbl> <dbl> <date> <chr> <dbl> <chr>
#> 1 2022 1 1 14 5 2022-01-14 YX 20452 YX
#> 2 2022 1 1 15 6 2022-01-15 YX 20452 YX
#> 3 2022 1 1 16 7 2022-01-16 YX 20452 YX
#> 4 2022 1 1 17 1 2022-01-17 YX 20452 YX
#> 5 2022 1 1 18 2 2022-01-18 YX 20452 YX
#> 6 2022 1 1 19 3 2022-01-19 YX 20452 YX
#> 7 2022 1 1 20 4 2022-01-20 YX 20452 YX
#> 8 2022 1 1 21 5 2022-01-21 YX 20452 YX
#> 9 2022 1 1 22 6 2022-01-22 YX 20452 YX
#> 10 2022 1 1 23 7 2022-01-23 YX 20452 YX
#> # ℹ more rows
#> # ℹ abbreviated names: ¹Reporting_Airline, ²DOT_ID_Reporting_Airline,
#> # ³IATA_CODE_Reporting_Airline
#> # ℹ 101 more variables: Tail_Number <chr>,
#> # Flight_Number_Reporting_Airline <dbl>, OriginAirportID <dbl>,
#> # OriginAirportSeqID <dbl>, OriginCityMarketID <dbl>, Origin <chr>,
#> # OriginCityName <chr>, OriginState <chr>, OriginStateFips <chr>,
#> # OriginStateName <chr>, OriginWac <dbl>, DestAirportID <dbl>,
#> # DestAirportSeqID <dbl>, DestCityMarketID <dbl>, Dest <chr>,
#> # DestCityName <chr>, DestState <chr>, DestStateFips <chr>,
#> # DestStateName <chr>, DestWac <dbl>, CRSDepTime <chr>, DepTime <chr>,
#> # DepDelay <dbl>, DepDelayMinutes <dbl>, DepDel15 <dbl>, …
flights |>
count(Year)
#> # A duckplyr data frame: 2 variables
#> Year n
#> <dbl> <int>
#> 1 2022 6729125
#> 2 2023 6847899
#> 3 2024 3461319
Complex queries can be executed on the remote data. Note how only the relevant columns are fetched and the 2024 data isn’t even touched, as it’s not needed for the result.
out <-
flights |>
filter(!is.na(DepDelay), !is.na(ArrDelay)) |>
mutate(InFlightDelay = ArrDelay - DepDelay) |>
summarize(
.by = c(Year, Month),
MeanInFlightDelay = mean(InFlightDelay),
MedianInFlightDelay = median(InFlightDelay),
) |>
filter(Year < 2024)
out |>
explain()
#> ┌───────────────────────────┐
#> │ HASH_GROUP_BY │
#> │ ──────────────────── │
#> │ Groups: │
#> │ #0 │
#> │ #1 │
#> │ │
#> │ Aggregates: │
#> │ mean(#2) │
#> │ median(#3) │
#> │ │
#> │ ~1345825 Rows │
#> └─────────────┬─────────────┘
#> ┌─────────────┴─────────────┐
#> │ PROJECTION │
#> │ ──────────────────── │
#> │ Year │
#> │ Month │
#> │ InFlightDelay │
#> │ InFlightDelay │
#> │ │
#> │ ~2691650 Rows │
#> └─────────────┬─────────────┘
#> ┌─────────────┴─────────────┐
#> │ PROJECTION │
#> │ ──────────────────── │
#> │ Year │
#> │ Month │
#> │ InFlightDelay │
#> │ │
#> │ ~2691650 Rows │
#> └─────────────┬─────────────┘
#> ┌─────────────┴─────────────┐
#> │ PROJECTION │
#> │ ──────────────────── │
#> │ Year │
#> │ Month │
#> │ DepDelay │
#> │ ArrDelay │
#> │ │
#> │ ~2691650 Rows │
#> └─────────────┬─────────────┘
#> ┌─────────────┴─────────────┐
#> │ FILTER │
#> │ ──────────────────── │
#> │ ((NOT ((DepDelay IS NULL) │
#> │ OR isnan(DepDelay))) AND │
#> │ (NOT ((ArrDelay IS NULL) │
#> │ OR isnan(ArrDelay)))) │
#> │ │
#> │ ~2691650 Rows │
#> └─────────────┬─────────────┘
#> ┌─────────────┴─────────────┐
#> │ READ_PARQUET │
#> │ ──────────────────── │
#> │ Function: │
#> │ READ_PARQUET │
#> │ │
#> │ Projections: │
#> │ DepDelay │
#> │ ArrDelay │
#> │ Year │
#> │ Month │
#> │ │
#> │ File Filters: │
#> │ (CAST(Year AS DOUBLE) < │
#> │ 2024.0) │
#> │ │
#> │ Scanning Files: 2/2 │
#> │ │
#> │ ~13458250 Rows │
#> └───────────────────────────┘
out |>
print() |>
system.time()
#> # A duckplyr data frame: 4 variables
#> Year Month MeanInFlightDelay MedianInFlightDelay
#> <dbl> <dbl> <dbl> <dbl>
#> 1 2022 11 -5.21 -7
#> 2 2023 11 -7.10 -8
#> 3 2022 8 -5.27 -7
#> 4 2022 7 -5.13 -7
#> 5 2023 4 -4.54 -6
#> 6 2022 4 -4.88 -6
#> 7 2023 8 -5.73 -7
#> 8 2023 7 -4.47 -7
#> 9 2022 6 -5.07 -7
#> 10 2022 12 -4.63 -6
#> # ℹ more rows
#> user system elapsed
#> 1.759 0.350 9.322
Over 10M rows analyzed in about 10 seconds over the internet, that’s not bad. Of course, working with Parquet, CSV, or JSON files downloaded locally is possible as well.
Refer to vignette("developers", package = "duckplyr")
.
We would like to guide our efforts towards improving duckplyr, focusing on the features with the most impact. To this end, duckplyr collects and uploads telemetry data, but only if permitted by the user:
- No collection will happen unless the user explicitly opts in.
- Uploads are done upon request only.
- There is an option to automatically upload when the package is loaded, this is also opt-in.
The data collected contains:
- The package version
- The error message
- The operation being performed, and the arguments
- For the input data frames, only the structure is included (column types only), no column names or data
The first time the package encounters an unsupported function, data type, or operation, instructions are printed to the console.
out <-
nycflights13::flights %>%
duckplyr::as_duck_tbl()
The duckplyr package is a dplyr backend that uses DuckDB, a high-performance, embeddable analytical database. It is designed to be a fully compatible drop-in replacement for dplyr, with exactly the same syntax and semantics:
- Input and output are data frames or tibbles.
- All dplyr verbs are supported, with fallback.
- All R data types and functions are supported, with fallback.
- No SQL is generated.
The dbplyr package is a dplyr backend that connects to SQL databases, and is designed to work with various databases that support SQL, including DuckDB. Data must be copied into and collected from the database, and the syntax and semantics are similar but not identical to plain dplyr.