Disclaimer: This repo is not actively maintained and I do not plan to maintain it. If you need the dataset, please email me. Thank you for your understanding.
Implementation of the model used in the paper Protest Activity Detection and Perceived Violence Estimation from Social Media Images (ACM Multimedia 2017) [arxiv] by Donghyeon Won, Zachary C. Steinert-Threlkeld, Jungseock Joo.
Pytorch
NumPy
pandas
scikit-learn
python train.py --data_dir UCLA-protest/ --batch_size 32 --lr 0.002 --print_freq 100 --epochs 100 --cuda
python pred.py --img_dir path/to/some/image/directory/ --output_csvpath result.csv --model model_best.pth.tar --cuda
You will need to download our UCLA Protest Image Dataset to train the model. Please e-mail me if you want to download our dataset!
# of images: 40,764
# of protest images: 11,659
Fields | Protest | Sign | Photo | Fire | Police | Children | Group>20 | Group>100 | Flag | Night | Shouting |
---|---|---|---|---|---|---|---|---|---|---|---|
# of Images | 11,659 | 9,669 | 428 | 667 | 792 | 347 | 8,510 | 2,939 | 970 | 987 | 548 |
Positive Rate | 0.286 | 0.829 | 0.037 | 0.057 | 0.068 | 0.030 | 0.730 | 0.252 | 0.083 | 0.085 | 0.047 |
Mean | Median | STD |
---|---|---|
0.365 | 0.352 | 0.144 |
We fine-tuned ImageNet pretrained ResNet50 to our data. You can download the model I trained from this Dropbox link.
Protest | Sign | Photo |
---|---|---|
Fire | Police | Children |
---|---|---|
Group>20 | Group>100 | Flag |
---|---|---|
Night | Shouting | Violence |
---|---|---|