Skip to content

Extended Sierpinski problems

xayahrainie4793 edited this page Jun 9, 2020 · 1 revision

Sierpinski problems

Definition For the original Sierpinski problem, it is finding and proving the smallest k such that k×bn+1 is not prime for all integers n ≥ 1 and GCD(k+1, b-1)=1.

Extended definiton Finding and proving the smallest k such that (k×bn+1)/GCD(k+1, b-1) is not prime for all integers n ≥ 1.

Notes All n must be >= 1.

k-values that make a full covering set with all or partial algebraic factors are excluded from the conjectures.

k-values that are a multiple of base (b) and where (k+1)/gcd(k+1,b-1) is not prime are included in the conjectures but excluded from testing.

Such k-values will have the same prime as k / b.

Table Colors used proven and all primes are defined primes

proven but some primes are only probable primes that have not been certified
unproven

Base

Conjectured smallest Sierpinski k

Covering set

k’s that make a full covering set with all or partial algebraic factors

Remaining k to find prime

(n testing limit)

Top 10 k’s with largest first primes: k(n)

(only sorted by n)

Comments

2

78557

3, 5, 7, 13, 19, 37, 73

21181, 22699, 24737, 55459, 65536, 67607 (k = 65536 at n=8.589G, other k at n=31.8M)

10223 (31172165)

19249 (13018586)

27653 (9167433)

28433 (7830457)

33661 (7031232)

5359 (5054502)

4847 (3321063)

54767 (1337287)

69109 (1157446)

65567 (1013803)

3

11047

2, 5, 7, 13, 73

1187, 1801, 3007, 3047, 3307, 5321, 5743, 5893, 6427, 6569, 6575, 7927, 8161, 8227, 8467, 8609, 8863, 8987, 9263, 9449 (all at n=16.3K)

621 (20820)

3061 (15772)

10243 (9731)

2747 (7097)

10207 (6089)

823 (6087)

10741 (6028)

821 (5512)

5147 (5153)

9721 (5040)

4

419

3, 5, 7, 13

none - proven

186 (10458)

94 (291)

176 (228)

129 (207)

89 (167)

86 (108)

174 (103)

369 (71)

101 (66)

293 (58)

5

7

2, 3

none - proven

4 (2)

3 (2)

6 (1)

5 (1)

2 (1)

1 (1)

6

174308

7, 13, 31, 37, 97

1296, 1814, 9589, 12179, 13215, 14505, 22139, 23864, 29014, 43429, 49874, 50252, 57189, 62614, 67894, 73814, 76441, 80389, 87284, 87289, 87800, 97131, 100899, 112783, 117454, 122704, 124874, 127688, 132614, 135199, 139959, 145984, 151719, 152209, 166753, 168610 (k = 1296 at n=268.4M, k = 1814 at n=175.6K, other k = 4 mod 5 at n=33.5K, other k at n=4M)

124125 (2018254)

139413 (1279992)

33706 (910462)

125098 (896696)

31340 (833096)

59506 (780877)

10107 (559967)

113966 (511831)

172257 (349166)

121736 (298935)

7

209

2, 3, 5, 13, 43

none - proven

141 (1044)

121 (252)

101 (216)

21 (124)

181 (80)

173 (48)

87 (47)

145 (46)

77 (44)

187 (35)

8

47

3, 5, 13

All k = m^3 for all n;

factors to:

(m*2^n + 1) *

(m2*4n - m*2^n + 1)

none - proven

31 (20)

46 (4)

40 (4)

37 (4)

28 (4)

16 (4)

13 (4)

45 (3)

38 (3)

36 (3)

k = 1, 8, and 27 proven composite by full algebraic factors.

9

31

2, 5

none - proven

26 (6)

21 (4)

24 (3)

17 (3)

28 (2)

23 (2)

16 (2)

11 (2)

10 (2)

7 (2)

10

989

3, 7, 11, 13

100, 269 (k = 100 at n=33.55M, k = 269 at n=100K)

804 (5470)

342 (338)

485 (230)

912 (215)

815 (190)

378 (188)

494 (135)

640 (120)

737 (117)

603 (107)

11

5

2, 3

none - proven

4 (2)

1 (2)

3 (1)

2 (1)

12

521

5, 13, 29

12 (33.55M)

404 (714558)

378 (2388)

261 (644)

407 (367)

354 (291)

37 (199)

30 (144)

88 (113)

17 (78)

274 (74)

13

15

2, 7

none - proven

11 (564)

8 (4)

13 (3)

3 (2)

2 (2)

14 (1)

12 (1)

10 (1)

9 (1)

7 (1)

14

4

3, 5

none - proven

1 (2)

3 (1)

2 (1)

15

673029

2, 17, 113, 1489

225, 341, 343, 641, 965, 1205, 1827, 2263, 2323, 2403, 2445, 2461, 2471, 2531, 2813, 3347, 3625, 3797, 3935, 3959, 4045, 4169, 4355, 4665, 4733, 5169, 5793, 5891, 5983, 6061, 6331, 6476, 6553, 6598, 6661, 6775, 6849, 7087, 7693, 7711, 7773, 7975, 7979, 8017, 8161, 8181, 8271, 8603, 8881, 9215, 9643, 9767, 9783, 9857 (for k ⇐ 10K) (k = 225 at n=524K, other k at n=1.5K)

6598 (11715)

6476 (1522)

5529 (1446)

6313 (1276)

7763 (1179)

4787 (1129)

219 (1129)

5975 (1099)

7957 (1082)

5653 (1064)

16

38

3, 7, 13

All k=4*q^4 for all n:

let k=4*q^4

and let m=q*2^n; factors to:

(2*m^2 + 2m + 1) *

(2*m^2 - 2m + 1)

none - proven

23 (1074)

33 (7)

35 (4)

18 (4)

10 (3)

5 (3)

32 (2)

31 (2)

30 (2)

24 (2)

k = 4 proven composite by full algebraic factors.

17

31

2, 3

none - proven

10 (1356)

7 (190)

2 (47)

29 (41)

20 (13)

23 (9)

4 (6)

16 (4)

1 (4)

30 (3)

18

398

5, 13, 19

18 (33.55M)

122 (292318)

381 (24108)

291 (2415)

37 (457)

362 (258)

123 (236)

183 (171)

363 (163)

209 (79)

318 (78)

19

9

2, 5

none - proven

5 (78)

6 (14)

4 (3)

1 (2)

8 (1)

7 (1)

3 (1)

2 (1)

20

8

3, 7

none - proven

6 (15)

7 (2)

4 (2)

1 (2)

5 (1)

3 (1)

2 (1)

21

23

2, 11

none - proven

12 (10)

21 (3)

19 (2)

11 (2)

8 (2)

3 (2)

22 (1)

20 (1)

18 (1)

17 (1)

22

2253

5, 23, 97

22, 1754, 1772, 1862, 2186, 2232 (k = 22 at n=16.77M, other k at n=16.8K)

1611 (738988)

1908 (355313)

942 (18359)

740 (18137)

1496 (17480)

461 (16620)

953 (5596)

1793 (4121)

1161 (3720)

346 (3180)

23

5

2, 3

none - proven

4 (342)

1 (4)

3 (3)

2 (1)

24

30651

5, 7, 13, 73, 79

656, 1099, 1816, 1851, 1864, 2164, 2351, 2529, 2586, 3404, 3526, 3609, 4346, 4606, 4894, 5129, 5316, 5324, 5386, 5889, 5974, 7276, 7746, 7844, 8054, 8091, 8161, 9279, 9304, 9701, 9721, 10026, 10156, 10326, 10531, 11346, 12626, 12969, 12991, 13716, 14006, 14604, 15921, 17334, 17819, 17876, 18006, 18204, 18911, 19031, 19094, 20219, 20676, 20731, 21459, 21849, 22289, 22356, 22479, 23844, 23874, 24784, 25964, 25966, 26279, 27344, 29091, 29349, 29464, 29566, 29601 (k = 22 mod 23 at n=11.3K, other k at n=400K)

13984 (397259)

3846 (383526)

23981 (360062)

8369 (359371)

3706 (353908)

12799 (353083)

29009 (338099)

28099 (332519)

21526 (329368)

26804 (266195)

25

79

2, 13

71 (10K)

61 (3104)

40 (518)

59 (48)

77 (27)

68 (15)

47 (9)

12 (9)

51 (7)

66 (6)

57 (5)

26

221

3, 7, 19, 37

65, 155 (both at n=1M)

32 (318071)

217 (11454)

95 (1683)

178 (1154)

138 (827)

157 (308)

175 (276)

211 (98)

149 (87)

197 (71)

27

13

2, 7

All k = m^3 for all n;

factors to:

(m*3^n + 1) *

(m2*9n - m*3^n + 1)

none - proven

9 (10)

7 (3)

12 (2)

5 (2)

2 (2)

11 (1)

10 (1)

6 (1)

4 (1)

3 (1)

k = 1 and 8 proven composite by full algebraic factors.

28

4554

5, 29, 157

871, 3104, 4552 (k = 3104 at n=25.5K, k = 871 and 4552 at n=1M)

3394 (427262)

4233 (331135)

2377 (104621)

146 (47316)

1291 (22811)

2203 (13911)

1565 (8607)

1797 (5681)

1043 (5459)

2467 (4956)

29

4

3, 5

none - proven

3 (2)

1 (2)

2 (1)

30

867

7, 13, 19, 31

278, 588 (both at n=800K)

699 (11837)

242 (5064)

659 (4936)

311 (1760)

559 (1654)

557 (1463)

740 (1135)

12 (1023)

83 (644)

293 (361)

31

239

2, 3, 7, 19

1, 43, 51, 73, 77, 107, 117, 149, 181, 209 (k = 1 at n=524K, other k at n=6K)

189 (5570)

191 (1553)

5 (1026)

113 (178)

121 (118)

145 (78)

37 (64)

33 (62)

205 (60)

97 (58)

32

10

3, 11

All k = m^5 for all n;

factors to:

(m*2^n + 1) *

(m4*16n - m3*8n + m2*4n - m*2^n + 1)

4 (1.717G)

9 (13)

7 (4)

5 (3)

2 (3)

8 (1)

6 (1)

3 (1)

k = 1 proven composite by full algebraic factors.

33

511

2, 17

67, 203 (both at n=12K)

36 (23615)

407 (10961)

154 (6846)

319 (5043)

288 (4583)

418 (780)

11 (593)

305 (561)

251 (495)

63 (347)

34

6

5, 7

none - proven

5 (12)

1 (4)

4 (1)

3 (1)

2 (1)

35

5

2, 3

none - proven

4 (42)

1 (2)

3 (1)

2 (1)

36

1886

13, 31, 37, 43

1296, 1814 (k = 1296 at n=134.2M, k = 1814 at n=87.8K)

960 (1571)

716 (1554)

526 (698)

1000 (542)

223 (480)

1096 (407)

1570 (352)

667 (302)

1115 (280)

1669 (240)

37

39

2, 19

37 (524K)

19 (5310)

18 (461)

17 (12)

36 (9)

35 (6)

33 (6)

3 (6)

31 (5)

32 (4)

11 (4)

38

14

3, 13

1 (16.77M)

2 (2729)

9 (21)

4 (10)

8 (7)

10 (4)

7 (4)

3 (3)

13 (2)

12 (1)

11 (1)

39

9

2, 5

none - proven

6 (2)

5 (2)

1 (2)

8 (1)

7 (1)

4 (1)

3 (1)

2 (1)

40

47723

3, 7, 41, 223

344, 1098, 1169, 1229, 1415, 1600, 2012, 2215, 2294, 2338, 2543, 2768, 2789, 2951, 2957, 3050, 3281, 3656, 3689, 3812, 3935, 4127, 4224, 4388, 4468, 4514, 4565, 4586, 4675, 4742, 4757, 4820, 4835, 4883, 4943, 5003, 5042, 5126, 5165, 5372, 5414, 5477, 5698, 5700, 5944, 6014, 6095, 6376, 6413, 6563, 6689, 7051, 7076, 7092, 7172, 7299, 7319, 7404, 7552, 7586, 7707, 7934, 8117, 8165, 8255, 8273, 8283, 8324, 8362, 8363, 8552, 8624, 8792, 8978, 8980, 9090, 9101, 9221, 9224, 9238, 9731, 9935, 9964, 10112, 10187, 10261, 10639, 10652, 10661, 10690, 10741, 10762, 10988, 11112, 11192, 11195, 11293, 11306, 11356, 11358, 11438, 11522, 11635, 11645, 11684, 11750, 12164, 12422, 12668, 12791, 12955, 12994, 13025, 13094, 13193, 13283, 13324, 13406, 13445, 13904, 13970, 14103, 14465, 14510, 14555, 14679, 14730, 14759, 14816, 14909, 15104, 15130, 15263, 15284, 15292, 15374, 15417, 15579, 15581, 15702, 15803, 15989, 16235, 16319, 16445, 16481, 16768, 16850, 17303, 17465, 17477, 17957, 18083, 18146, 18164, 18285, 18365, 18386, 18398, 18410, 18491, 18572, 18613, 18692, 18695, 18779, 18818, 18859, 19037, 19073, 19187, 19202, 19213, 19280, 19394, 19570, 19640, 19884, 20051, 20124, 20198, 20213, 20214, 20267, 20318, 20376, 20402, 20540, 20870, 20894, 20951, 20963, 21026, 21032, 21176, 21196, 21207, 21407, 21895, 22016, 22057, 22136, 22327, 22426, 22467, 22671, 22945, 22961, 23042, 23123, 23189, 23201, 23246, 23342, 23371, 23479, 23492, 23582, 23621, 23741, 23799, 23816, 23984, 24085, 24167, 24221, 24437, 24476, 24519, 24594, 24599, 25337, 25501, 25624, 25667, 25799, 26006, 26036, 26075, 26198, 26241, 26255, 26387, 26731, 26815, 26855, 26921, 26947, 26987, 26990, 27102, 27182, 27389, 27430, 27464, 27614, 27653, 27948, 28332, 28382, 28496, 28535, 28552, 28578, 28619, 28778, 29045, 29108, 29150, 29291, 29342, 29603, 29642, 29849, 29972, 30227, 30236, 30269, 30344, 30503, 30505, 30546, 30608, 30647, 30751, 31079, 31088, 31220, 31226, 31418, 31489, 31538, 31733, 31770, 31928, 31952, 32078, 32206, 32375, 32512, 32555, 32637, 32660, 32678, 32717, 32756, 33065, 33158, 33170, 33211, 33344, 33482, 33581, 33662, 33764, 33785, 33827, 33913, 33929, 33959, 34029, 34175, 34505, 34646, 34709, 34748, 34808, 35188, 35333, 35375, 35382, 35384, 35390, 35417, 35429, 35507, 35519, 35546, 35552, 35612, 35669, 35822, 35828, 35835, 35837, 35894, 35999, 36011, 36101, 36163, 36170, 36185, 36243, 36368, 36436, 36655, 36668, 36808, 36824, 37205, 37229, 37268, 37358, 37391, 37514, 37577, 37703, 38023, 38047, 38084, 38252, 38306, 38324, 38334, 38378, 38664, 38763, 38825, 38828, 38900, 38951, 38980, 39014, 39115, 39119, 39180, 39230, 39525, 39722, 39743, 39853, 40438, 40517, 40667, 40878, 40940, 41165, 41411, 41444, 41450, 41479, 41695, 41696, 41750, 41798, 41819, 41999, 42106, 42230, 42473, 42899, 43019, 43058, 43174, 43295, 43334, 43499, 43727, 43787, 43830, 43892, 43994, 44238, 44279, 44447, 44546, 44617, 44665, 44732, 44759, 44894, 44969, 45222, 45272, 45676, 46337, 46370, 46698, 46709, 46862, 46925, 46987, 47155, 47272, 47276, 47429, 47559, 47561, 47582, 47684, 47693 (all at n=1K)

8870 (1000)

43254 (995)

44862 (981)

39533 (972)

40661 (967)

47069 (964)

8381 (963)

36983 (956)

2489 (946)

15118 (934)

41

8

3, 7

none - proven

1 (16)

4 (6)

6 (3)

7 (2)

5 (1)

3 (1)

2 (1)

42

13372

5, 43, 353

42, 988, 1117, 1421, 3226, 4127, 5503, 6707, 8298, 8601, 9074, 11093, 11717, 11738, 11912, 12256, 13283 (k = 42 at n=16.77M, k = 13283 at n=10K, other k at n=600K)

8343 (560662)

12001 (312245)

12042 (277646)

4643 (143933)

4297 (142044)

4731 (141968)

3897 (136780)

10009 (132629)

2794 (126595)

8300 (116404)

43

21

2, 11

none - proven

13 (580)

9 (498)

3 (171)

5 (38)

17 (34)

15 (23)

1 (8)

18 (3)

16 (3)

14 (2)

44

4

3, 5

none - proven

1 (16)

3 (9)

2 (1)

45

47

2, 23

none - proven

24 (18522)

15 (55)

42 (36)

3 (28)

35 (22)

8 (8)

30 (5)

38 (3)

23 (3)

20 (3)

46

881

3, 7, 103

563, 845 (both at n=35K)

283 (21198)

17 (4920)

140 (2105)

619 (2005)

278 (1788)

347 (1287)

729 (1006)

95 (446)

229 (443)

871 (405)

47

5

2, 3

none - proven

2 (175)

1 (8)

4 (2)

3 (1)

48

1219

7, 13, 61, 181

36, 62, 153, 561, 622, 1114, 1168 (all at n=500K)

937 (309725)

701 (284564)

1077 (216501)

1086 (136352)

1121 (133656)

29 (133042)

841 (84732)

1099 (81106)

359 (35671)

1028 (22619)

49

31

2, 5

none - proven

24 (165)

21 (62)

22 (39)

11 (26)

16 (10)

29 (9)

9 (3)

26 (2)

20 (2)

15 (2)

50

16

3, 17

1 (16.77M)

7 (516)

4 (10)

11 (9)

10 (4)

13 (2)

9 (2)

15 (1)

14 (1)

12 (1)

8 (1)

51

25

2, 13

none - proven

5 (6)

24 (5)

21 (4)

13 (4)

10 (3)

3 (3)

17 (2)

16 (2)

14 (2)

9 (2)

52

28674

5, 53, 541

42, 52, 106, 113, 158, 216, 266, 278, 311, 317, 366, 383, 419, 584, 608, 661, 674, 689, 743, 863, 902, 938, 941, 956, 973, 1043, 1100, 1241, 1247, 1292, 1324, 1326, 1376, 1378, 1433, 1463, 1483, 1502, 1538, 1591, 1642, 1658, 1689, 1727, 1730, 1778, 1808, 1907, 2150, 2174, 2297, 2378, 2384, 2386, 2396, 2516, 2570, 2598, 2624, 2632, 2711, 2813, 2894, 2978, 3107, 3114, 3181, 3232, 3254, 3386, 3418, 3426, 3434, 3474, 3497, 3602, 3659, 3671, 3746, 3749, 3767, 3827, 3868, 4007, 4073, 4112, 4133, 4135, 4241, 4292, 4373, 4706, 4804, 4901, 4928, 4967, 4970, 4981, 5087, 5281, 5282, 5343, 5354, 5399, 5405, 5567, 5570, 5573, 5619, 5621, 5624, 5633, 5693, 5711, 5723, 5725, 5776, 5831, 5882, 5909, 5912, 5988, 6002, 6011, 6037, 6044, 6125, 6147, 6149, 6239, 6246, 6331, 6359, 6385, 6536, 6572, 6632, 6654, 6687, 6743, 6767, 6770, 6836, 6891, 6981, 7058, 7089, 7147, 7207, 7237, 7262, 7283, 7313, 7358, 7397, 7400, 7577, 7580, 7586, 7653, 7737, 7739, 7763, 7883, 7990, 7998, 8048, 8054, 8132, 8189, 8255, 8322, 8331, 8392, 8479, 8579, 8638, 8681, 8693, 8723, 8786, 8948, 8973, 8983, 8990, 9083, 9134, 9150, 9242, 9243, 9314, 9329, 9356, 9380, 9421, 9433, 9437, 9542, 9563, 9602, 9635, 9698, 9737, 9848, 9943, 9977, 9988, 10002, 10004, 10013, 10061, 10154, 10172, 10188, 10192, 10246, 10328, 10396, 10411, 10451, 10487, 10493, 10499, 10548, 10586, 10601, 10641, 10652, 10667, 10679, 10739, 10793, 10853, 10861, 10862, 10916, 10917, 10919, 10946, 10971, 10999, 11042, 11078, 11120, 11138, 11146, 11237, 11321, 11391, 11516, 11522, 11553, 11684, 11714, 11747, 11765, 11771, 11798, 11818, 12035, 12062, 12091, 12191, 12197, 12201, 12266, 12391, 12404, 12461, 12471, 12533, 12623, 12721, 12779, 12884, 12918, 12931, 13043, 13088, 13136, 13152, 13171, 13251, 13277, 13310, 13316, 13355, 13362, 13451, 13478, 13491, 13514, 13673, 13697, 13728, 13784, 13799, 13808, 13842, 13922, 13952, 13994, 14129, 14132, 14234, 14256, 14336, 14447, 14583, 14657, 14691, 14786, 14849, 14888, 14906, 14998, 15110, 15123, 15157, 15282, 15422, 15424, 15474, 15545, 15617, 15636, 15637, 15656, 15659, 15687, 15737, 15901, 16046, 16058, 16119, 16133, 16166, 16204, 16219, 16273, 16352, 16442, 16481, 16535, 16559, 16571, 16574, 16607, 16652, 16661, 16738, 16742, 16749, 16802, 16853, 16893, 16961, 17012, 17022, 17027, 17054, 17120, 17165, 17167, 17168, 17247, 17277, 17279, 17342, 17383, 17491, 17543, 17573, 17712, 17723, 17809, 17819, 17996, 18072, 18077, 18233, 18236, 18251, 18328, 18449, 18458, 18526, 18602, 18604, 18632, 18636, 18686, 18724, 18797, 18816, 18857, 18914, 18951, 19043, 19066, 19081, 19094, 19121, 19132, 19157, 19178, 19241, 19319, 19328, 19337, 19352, 19397, 19403, 19451, 19493, 19556, 19592, 19634, 19646, 19721, 19751, 19768, 19872, 19959, 19967, 19980, 19982, 20035, 20163, 20192, 20300, 20351, 20459, 20475, 20487, 20516, 20526, 20624, 20722, 20830, 20840, 20897, 20936, 20975, 20987, 20996, 21041, 21136, 21167, 21212, 21246, 21272, 21347, 21353, 21354, 21359, 21517, 21653, 21701, 21806, 21835, 21851, 21902, 22024, 22053, 22055, 22071, 22169, 22233, 22332, 22418, 22430, 22457, 22479, 22526, 22685, 22701, 22709, 22719, 22727, 22739, 22787, 22791, 23007, 23062, 23222, 23374, 23531, 23558, 23586, 23612, 23641, 23659, 23663, 23705, 23743, 23774, 23805, 23844, 23871, 23886, 23902, 23906, 23929, 23947, 23984, 23987, 24169, 24257, 24273, 24328, 24347, 24374, 24448, 24452, 24456, 24464, 24497, 24547, 24563, 24697, 24708, 24722, 24866, 24911, 25070, 25123, 25176, 25227, 25229, 25236, 25439, 25471, 25492, 25494, 25558, 25616, 25619, 25653, 25704, 25757, 25847, 25865, 25874, 25876, 25932, 25943, 26009, 26067, 26072, 26078, 26128, 26210, 26222, 26261, 26287, 26300, 26322, 26498, 26513, 26548, 26614, 26658, 26660, 26744, 26771, 26813, 26858, 26923, 26966, 27031, 27082, 27122, 27296, 27327, 27479, 27516, 27519, 27527, 27572, 27623, 27642, 27718, 27720, 27743, 27764, 27779, 27837, 27877, 27879, 27983, 27985, 28079, 28142, 28193, 28198, 28208, 28211, 28229, 28277, 28333, 28462, 28493, 28658, 28661 (all at n=1K)

2474 (995)

20462 (992)

4285 (988)

10883 (985)

12968 (973)

15954 (962)

26722 (955)

4372 (954)

14444 (953)

13656 (953)

53

7

2, 3

4 (1.575M)

6 (143)

5 (9)

1 (8)

3 (4)

2 (1)

54

21

5, 11

none - proven

19 (103)

16 (30)

13 (7)

12 (4)

4 (3)

20 (2)

18 (2)

11 (2)

6 (2)

1 (2)

55

13

2, 7

1 (524K)

10 (9)

9 (2)

8 (2)

5 (2)

4 (2)

12 (1)

11 (1)

7 (1)

6 (1)

3 (1)

56

20

3, 19

none - proven

4 (78)

19 (70)

13 (6)

7 (6)

3 (5)

16 (2)

15 (2)

10 (2)

1 (2)

18 (1)

57

47

2, 5, 13

none - proven

14 (14955)

39 (74)

27 (44)

46 (20)

30 (14)

31 (7)

38 (5)

25 (5)

16 (5)

6 (5)

58

488

3, 7, 163

58, 122, 176, 222, 431, 437, 461 (k = 58 at n=16.77M, k = 222 at n=125K, other k at n=14.9K)

178 (25524)

297 (11508)

266 (9040)

241 (1964)

296 (1892)

393 (1831)

106 (1795)

228 (1603)

20 (1340)

392 (1222)

59

4

3, 5

none - proven

2 (3)

1 (2)

3 (1)

60

16957

13, 61, 277

60, 853, 1646, 2075, 4025, 4406, 4441, 5064, 6772, 7262, 7931, 10226, 11406, 12323, 13785, 14958, 15007, 15452, 15676, 16050 (k = 60 at n=16.77M, other k at n=500K)

14066 (324990)

16014 (227010)

5767 (201439)

12927 (191870)

11441 (180105)

8923 (109088)

13846 (90979)

2497 (88149)

10405 (77541)

6465 (37209)

61

63

2, 31

none - proven

62 (3698)

43 (2788)

23 (1659)

10 (165)

19 (70)

32 (18)

25 (16)

36 (12)

57 (11)

26 (11)

62

8

3, 7

1 (16.77M)

7 (308)

2 (43)

3 (12)

4 (2)

6 (1)

5 (1)

63

1589

2, 5, 397

1, 83, 101, 103, 113, 133, 143, 185, 223, 237, 267, 283, 307, 309, 335, 343, 365, 367, 381, 391, 411, 425, 463, 467, 471, 487, 509, 549, 581, 587, 603, 605, 637, 643, 645, 673, 677, 681, 687, 689, 701, 789, 803, 807, 821, 825, 827, 881, 903, 937, 951, 963, 983, 989, 1021, 1027, 1043, 1047, 1049, 1063, 1067, 1103, 1121, 1189, 1201, 1207, 1263, 1267, 1283, 1321, 1341, 1367, 1401, 1433, 1461, 1463, 1467, 1481, 1523, 1553, 1563, 1581 (k = 1 at n=524K, other k at n=1K)

1108 (12351)

888 (2698)

9 (2162)

1174 (1989)

909 (938)

1085 (928)

1417 (918)

721 (816)

545 (810)

373 (774)

64

14

5, 13

All k = m^3 for all n;

factors to:

(m*4^n + 1) *

(m2*16n - m*4^n + 1)

none - proven

11 (3222)

13 (2)

6 (2)

12 (1)

10 (1)

9 (1)

7 (1)

5 (1)

4 (1)

3 (1)

k = 1 and 8 proven composite by full algebraic factors.

65

10

3, 11

none - proven

6 (5)

7 (2)

4 (2)

3 (2)

1 (2)

9 (1)

8 (1)

5 (1)

2 (1)

66

unknown

unknown

testing not started

67

26

3, 7, 31

1, 17, 21 (k = 1 at n=524K, other k at n=10K)

6 (4532)

11 (209)

12 (135)

7 (135)

19 (21)

5 (6)

2 (6)

22 (3)

16 (3)

25 (2)

68

22

3, 23

1, 17 (k = 1 at n=16.77M, k = 17 at n=1M)

12 (656921)

11 (3947)

8 (319)

16 (36)

5 (29)

13 (26)

19 (6)

10 (6)

4 (6)

18 (2)

69

6

5, 7

none - proven

3 (2)

1 (2)

5 (1)

4 (1)

2 (1)

70

11077

13, 29, 71

70, 89, 178, 212, 283, 285, 434, 545, 581, 629, 881, 1300, 1373, 1436, 1490, 1559, 1565, 1694, 1871, 1916, 1946, 1955, 2129, 2176, 2351, 2354, 2379, 2419, 2705, 2756, 3154, 3317, 3329, 3336, 3362, 3407, 3452, 3530, 3647, 3762, 3764, 3929, 3944, 4025, 4061, 4119, 4166, 4188, 4193, 4250, 4331, 4351, 4454, 4913, 5145, 5169, 5204, 5231, 5348, 5429, 5540, 5594, 5608, 5609, 5798, 5857, 5894, 5953, 5975, 6133, 6167, 6218, 6410, 6518, 6530, 6582, 6743, 7145, 7325, 7365, 7552, 7578, 7691, 7736, 7811, 7907, 7974, 7994, 8003, 8015, 8045, 8153, 8159, 8201, 8234, 8306, 8348, 8351, 8377, 8406, 8423, 8465, 8477, 8637, 8907, 8945, 9231, 9268, 9323, 9428, 9471, 9515, 9586, 9693, 9712, 9751, 9758, 10009, 10051, 10089, 10193, 10271, 10291, 10399, 10438, 10544, 10574, 10718, 10997, 11003 (all at n=1K)

3479 (998)

7345 (994)

10793 (976)

4155 (970)

1040 (965)

4343 (936)

2471 (936)

5578 (932)

4208 (926)

2877 (907)

71

5

2, 3

none - proven

4 (22)

2 (3)

1 (2)

3 (1)

72

731

5, 61, 73

72 (16.77M)

493 (480933)

647 (60536)

489 (20201)

559 (9626)

395 (8171)

444 (6071)

499 (2998)

292 (2779)

649 (2658)

521 (1208)

73

47

2, 5, 13

none - proven (with probable primes that have not been certified: k = 14)

14 (21369)

21 (1531)

39 (350)

16 (40)

8 (28)

13 (23)

25 (10)

17 (9)

36 (7)

38 (6)

74

4

3, 5

none - proven

1 (2)

3 (1)

2 (1)

75

37

2, 19

none - proven

11 (3071)

28 (129)

17 (128)

18 (57)

12 (57)

5 (48)

1 (32)

33 (18)

35 (11)

9 (6)

76

34

7, 11

none - proven

29 (84)

22 (16)

1 (16)

23 (12)

19 (6)

15 (6)

33 (4)

8 (4)

20 (3)

13 (3)

77

7

2, 3

1 (524K)

4 (6098)

2 (3)

3 (2)

6 (1)

5 (1)

78

96144

5, 79, 1217

78, 1143, 2371, 3317, 3513, 4346, 4820, 4897, 5136, 5294, 5531, 5686, 5862, 6103, 6353, 6859, 7188, 7594, 8373, 9558, 9652, 9694, 9701, 9953, 10348, 10723, 11003, 11219, 12244, 12251, 13353, 13508, 13768, 14566, 14832, 15126, 15777, 15899, 16071, 16273, 16591, 17588, 17761, 18248, 18776, 19501, 19828, 19931, 20146, 20206, 20754, 21171, 21284, 21453, 21489, 21884, 21972, 22279, 22662, 23337, 23341, 23953, 24254, 24672, 24877, 24886, 24912, 25044, 25171, 25199, 26069, 26212, 26515, 26592, 27059, 27124, 27537, 27663, 28202, 28423, 28518, 28597, 29303, 29322, 29497, 29784, 30572, 30967, 31030, 32073, 32633, 33094, 33193, 33318, 33732, 34208, 34522, 34528, 34712, 34998, 35244, 35433, 35628, 35709, 36014, 36497, 37068, 37456, 37773, 37795, 37842, 38009, 38393, 38401, 39724, 40361, 40844, 41239, 41271, 41634, 42671, 43214, 43493, 43609, 43693, 43770, 44428, 44631, 45268, 45345, 45352, 45582, 45584, 45779, 46213, 46374, 46927, 47053, 48012, 48113, 48173, 48187, 48824, 49139, 49149, 49482, 50441, 51148, 51428, 51501, 51981, 52238, 52541, 52744, 53503, 53703, 53721, 54263, 54273, 54438, 54669, 54942, 55026, 56091, 56199, 57276, 57303, 57694, 58409, 58582, 59373, 59611, 60513, 60906, 60987, 61417, 61648, 61777, 62033, 62567, 62663, 62964, 63596, 63666, 64542, 64712, 65253, 65727, 65887, 67070, 67591, 67941, 68011, 68053, 68697, 69173, 70943, 70982, 71168, 71203, 71609, 71730, 71952, 72225, 73943, 74051, 74249, 74367, 74733, 75019, 75492, 76394, 77182, 77209, 77573, 77972, 78826, 79001, 79127, 79749, 79949, 80046, 80263, 80343, 80737, 80739, 80897, 81731, 81864, 82556, 83419, 83502, 83978, 84013, 84818, 85133, 85714, 86267, 86281, 86371, 86503, 86687, 87016, 87156, 87328, 87559, 87614, 87691, 87821, 88321, 88479, 88619, 89039, 89214, 89352, 89429, 89836, 90481, 91009, 91125, 91496, 92826, 93587, 93624, 93722, 93774, 93873, 93981, 94114, 94758, 95354, 95670 (k = 78 at n=16.77M, k = 6 mod 7 and k = 10 mod 11 at n=1K, other k at n=100K)

31738 (98568)

83107 (95785)

25281 (83932)

22344 (83678)

12325 (83516)

79

9

2, 5

none - proven

3 (875)

5 (162)

6 (2)

1 (2)

8 (1)

7 (1)

4 (1)

2 (1)

80

1039

3, 7, 13, 43, 173

86, 92, 166, 295, 326, 370, 393, 472, 556, 623, 628, 692, 778, 818, 947, 968 (k = 947 at n=4K, other k at n=250K)

188 (142291)

433 (121106)

770 (107149)

857 (106007)

787 (48156)

1024 (46306)

233 (36917)

893 (28705)

922 (21374)

683 (18633)

81

575

2, 41

All k=4*q^4 for all n:

let k=4*q^4

and let m=q*3^n; factors to:

(2*m^2 + 2m + 1) *

(2*m^2 - 2m + 1)

34, 75, 239, 284, 317, 335, 389, 439, 514, 569 (all at n=1K)

558 (51992)

311 (7834)

41 (1223)

479 (495)

431 (414)

415 (385)

425 (258)

43 (236)

349 (227)

342 (218)

k = 4, 64, and 324 proven composite by full algebraic factors.

82

19587

5, 7, 13, 37, 83

74, 122, 167, 470, 839, 848, 1121, 1226, 1251, 1319, 1327, 1376, 1427, 1433, 1493, 1514, 1559, 1716, 1733, 1798, 1908, 2024, 2066, 2159, 2251, 2339, 2352, 2461, 2491, 2708, 2939, 2989, 3041, 3236, 3239, 3332, 3377, 3474, 3572, 3593, 3641, 3656, 3746, 3896, 3962, 4133, 4142, 4151, 4232, 4379, 4384, 4454, 4542, 4898, 5064, 5251, 5279, 5396, 5477, 5483, 5516, 5612, 5703, 5721, 5747, 5867, 5893, 5975, 6059, 6226, 6497, 6641, 6761, 6764, 6912, 6953, 7127, 7160, 7201, 7266, 7541, 7718, 7856, 7884, 7969, 7982, 8135, 8301, 8384, 8467, 8532, 8609, 8657, 8742, 8797, 8909, 9038, 9169, 9335, 9380, 9419, 9437, 9461, 9476, 9638, 9776, 9788, 9812, 9836, 9842, 9851, 9911, 9941, 9954, 10049, 10127, 10154, 10304, 10448, 10553, 10577, 10586, 10802, 10958, 11080, 11087, 11177, 11408, 11612, 11621, 11666, 11702, 11704, 11761, 11783, 11834, 11957, 11963, 11984, 12008, 12036, 12119, 12347, 12451, 12491, 12532, 12548, 12554, 12638, 12737, 12744, 12856, 12866, 12938, 12947, 12949, 13121, 13246, 13268, 13283, 13343, 13607, 13613, 13777, 14192, 14473, 14609, 14621, 14639, 14676, 14681, 14692, 14873, 14941, 14984, 15032, 15122, 15146, 15203, 15271, 15296, 15356, 15551, 15854, 15869, 15937, 15953, 16088, 16133, 16267, 16269, 16423, 16433, 16442, 16502, 16601, 16682, 16733, 16811, 16847, 17029, 17078, 17112, 17174, 17177, 17369, 17393, 17798, 17813, 17846, 17921, 18332, 18342, 18457, 18548, 18566, 18626, 18944, 18965, 18971, 19061, 19181, 19421 (k = 2 mod 3 at n=1K, other k at n=100K)

5652 (96054)

7288 (94205)

5101 (88245)

5977 (85004)

9676 (84109)

17692 (82887)

17091 (82407)

19134 (82154)

18168 (71000)

19098 (69654)

83

5

2, 3

1, 3 (k = 1 at n=524K, k = 3 at n=8K)

4 (5870)

2 (1)

84

16

5, 17

none - proven

14 (47)

15 (6)

10 (5)

2 (4)

11 (2)

7 (2)

6 (2)

3 (2)

1 (2)

13 (1)

85

87

2, 43

none - proven

70 (1586)

65 (125)

43 (62)

20 (57)

68 (12)

37 (12)

38 (11)

73 (7)

34 (7)

83 (6)

86

28

3, 29

1, 8 (k = 1 at n=16.77M, k = 8 at n=1M)

6 (40)

24 (23)

17 (17)

7 (12)

19 (6)

4 (6)

27 (4)

25 (2)

22 (2)

21 (2)

87

21

2, 11

none - proven

12 (1214)

8 (112)

17 (16)

1 (16)

7 (7)

5 (6)

16 (4)

10 (3)

14 (2)

13 (2)

88

26

3, 7, 19, 31

none - proven

8 (1094)

14 (83)

12 (9)

6 (7)

3 (4)

23 (3)

21 (3)

11 (3)

25 (2)

22 (2)

89

4

3, 5

1 (524K)

3 (1)

2 (1)

90

27

7, 13

none - proven

14 (14)

8 (14)

22 (6)

19 (6)

5 (6)

16 (4)

12 (3)

23 (2)

21 (2)

15 (2)

91

45

2, 23

1 (524K)

33 (52)

35 (45)

9 (36)

7 (17)

37 (12)

36 (9)

29 (8)

43 (7)

41 (6)

16 (6)

92

32

3, 31

1 (16.77M)

31 (416)

25 (308)

8 (109)

17 (59)

29 (47)

24 (38)

10 (24)

16 (12)

7 (6)

23 (5)

93

95

2, 47

62, 67, 87, 93 (k = 62 at n=100K, k = 93 and n=524K, other k at n=8K)

19 (4362)

36 (3936)

43 (2994)

31 (527)

6 (520)

3 (156)

79 (69)

71 (41)

63 (31)

18 (24)

94

39

5, 19

none - proven

17 (581)

9 (263)

11 (90)

31 (54)

2 (51)

16 (26)

23 (22)

34 (19)

30 (12)

38 (11)

95

5

2, 3

none - proven

3 (9)

4 (6)

1 (2)

2 (1)

96

68869

13, 97, 709

194, 939, 969, 994, 1169, 1177, 1262, 1514, 1844, 2146, 2424, 2545, 2868, 2952, 3028, 3364, 3624, 3699, 3784, 4019, 4164, 4239, 4549, 5140, 5239, 5262, 5764, 5959, 6009, 6074, 6304, 6389, 6569, 6668, 6671, 6769, 6882, 6934, 7132, 7246, 7312, 7539, 7569, 8009, 8069, 8226, 8634, 8796, 9020, 9064, 9309, 9489, 9589, 9619, 9799, 10089, 10139, 10574, 10669, 10739, 10844, 10849, 10939, 11154, 11159, 11361, 11549, 11634, 11659, 11738, 11974, 12029, 12054, 12417, 12706, 12999, 13044, 13519, 13773, 13899, 14169, 14279, 14299, 14494, 14646, 15194, 15208, 15228, 15448, 16073, 16279, 16349, 16799, 17009, 17029, 17264, 17362, 17517, 17564, 17909, 18189, 18231, 18254, 18916, 19109, 19254, 19289, 19304, 19683, 19884, 19934, 20064, 20324, 20369, 20494, 20584, 20599, 20733, 21194, 21234, 21679, 22309, 22419, 22569, 22604, 22699, 22999, 23174, 23629, 24015, 24049, 24259, 24490, 24724, 25459, 25575, 25829, 25995, 26229, 26379, 26424, 26577, 26846, 26899, 26941, 27219, 27299, 27334, 27514, 27644, 27682, 27849, 28939, 29039, 29278, 29411, 29574, 30360, 30459, 30484, 30509, 30689, 30779, 31461, 31621, 31979, 32138, 32239, 32300, 32319, 32369, 32384, 32432, 32609, 32664, 32714, 33034, 33175, 33229, 34119, 34267, 34469, 34744, 35071, 35296, 35309, 35404, 35794, 36304, 36824, 36834, 37129, 37829, 38134, 38219, 38546, 38609, 38739, 39164, 39187, 39309, 39386, 39719, 39777, 39983, 40014, 40724, 41339, 41614, 41674, 41709, 41779, 41806, 41905, 42004, 42179, 42199, 42291, 42374, 42394, 42444, 42629, 42901, 42954, 42979, 43194, 43389, 43494, 43739, 43909, 43914, 44136, 44384, 44539, 44611, 44634, 45009, 45589, 45774, 46134, 46214, 46344, 46409, 46444, 46658, 46684, 47139, 47143, 47164, 47238, 47259, 47344, 47644, 48010, 48214, 48307, 48404, 48479, 48504, 48582, 48744, 48749, 48914, 49017, 49249, 49859, 50079, 50194, 50224, 50387, 50549, 50709, 50929, 51099, 51159, 51399, 51414, 51797, 51827, 52019, 52034, 52209, 53004, 53079, 53465, 53519, 53624, 54016, 54254, 54509, 54994, 55049, 55774, 55959, 56044, 56229, 56719, 56854, 56919, 56939, 57037, 57114, 57264, 57520, 57524, 57968, 58199, 58215, 58356, 58644, 59189, 59519, 59654, 59684, 59799, 59945, 59947, 60014, 60194, 60269, 60464, 60624, 60917, 61014, 61034, 61384, 61524, 61699, 61773, 62024, 62774, 62884, 62954, 63029, 63439, 63504, 63509, 63799, 63809, 63939, 64454, 64484, 64644, 64700, 64789, 64871, 64982, 65019, 65089, 65164, 65229, 65239, 65379, 65399, 65573, 65606, 65668, 65749, 65864, 66039, 66096, 66119, 66349, 66559, 66664, 66734, 66749, 66929, 67159, 67174, 67373, 67976, 68004, 68169, 68192, 68274, 68339, 68384, 68444, 68532, 68752, 68774 (k = 4 mod 5 and k = 18 mod 19 at n=1K, other k at n=100K)

97

127

2, 7

1, 27, 43, 62, 83, 116, 120, 123 (k = 1 at n=524K, k = 120 at n=100K, other k at n=1K)

64 (7474)

22 (2182)

122 (660)

68 (593)

26 (224)

87 (167)

24 (158)

113 (104)

41 (89)

17 (64)

98

10

3, 11

1 (16.77M)

4 (294)

8 (119)

6 (32)

7 (8)

3 (2)

9 (1)

5 (1)

2 (1)

99

9

2, 5

1 (524K)

5 (14)

8 (10)

6 (6)

7 (1)

4 (1)

3 (1)

2 (1)

100

62

3, 7, 13

none - proven

31 (168)

38 (29)

59 (24)

34 (13)

36 (8)

17 (6)

52 (5)

3 (5)

60 (4)

46 (4)

101

7

2, 3

none - proven

2 (192275)

3 (22)

5 (3)

4 (2)

1 (2)

6 (1)

102

293

7, 19, 79

122, 178, 236 (all at n=300K)

46 (50451)

278 (10941)

94 (6421)

12 (2739)

73 (2040)

131 (1112)

202 (610)

56 (499)

48 (305)

271 (300)

103

25

2, 13

7 (8K)

13 (7010)

20 (476)

11 (81)

23 (51)

14 (34)

21 (16)

5 (16)

2 (8)

8 (7)

1 (4)

104

4

3, 5

1 (16.77M)

2 (1233)

3 (1)

105

319

2, 53

none - proven (with probable primes that have not been certified: k = 191)

191 (5045)

36 (675)

39 (348)

264 (275)

183 (210)

150 (193)

80 (177)

164 (146)

167 (140)

204 (105)

106

2387

3, 19, 199

69, 110, 164, 198, 259, 412, 436, 449, 635, 653, 679, 740, 748, 812, 887, 929, 1000, 1088, 1160, 1190, 1421, 1429, 1511, 1544, 1559, 1607, 1628, 1703, 1796, 1823, 1835, 1925, 1973, 1985, 2018, 2036, 2075, 2119, 2177, 2189, 2216, 2279 (all at n=1K)

626 (998)

79 (987)

1001 (921)

632 (889)

1437 (807)

1310 (797)

890 (742)

1730 (720)

509 (695)

2330 (593)

107

5

2, 3

1 (524K)

4 (32586)

3 (165)

2 (3)

108

26270

7, 13, 109, 127

108, 127, 156, 211, 217, 653, 998, 1267, 1271, 1854, 2252, 2393, 2399, 2724, 2842, 2915, 2942, 2976, 3098, 3563, 3571, 3925, 3938, 4162, 4311, 4391, 4468, 4623, 4699, 5013, 5117, 5251, 5778, 5794, 5849, 5924, 5994, 6686, 7211, 7478, 8401, 8623, 8642, 8828, 9127, 9482, 9578, 9941, 10188, 10202, 10245, 10574, 10689, 10973, 11008, 11028, 11321, 11335, 11703, 11833, 11909, 12172, 12209, 12427, 12534, 13081, 13299, 13316, 13844, 13861, 14044, 14134, 14691, 14932, 15207, 15638, 15912, 15913, 15926, 16042, 16122, 16240, 16569, 16896, 17267, 17616, 18319, 18638, 19098, 19158, 19294, 19318, 19839, 19948, 19966, 20303, 20543, 20687, 20929, 21181, 21262, 21511, 21532, 21581, 21818, 21908, 22008, 22182, 22194, 22259, 22266, 22562, 22706, 23066, 23327, 23543, 23838, 24078, 24088, 24103, 24529, 24756, 24767, 24853, 25062, 25068, 25071, 25319, 25546, 25607, 25763, 25973, 26234, 26256 (k = 108 at n=16.77M, k = 20543 at n=2K, other k at n=100K)

7612 (99261)

7304 (94930)

15874 (94153)

8034 (93577)

2874 (91402)

20666 (91335)

7631 (90728)

9187 (90213)

6759 (89530)

21101 (88027)

109

19

2, 5

1 (524K)

3 (6)

4 (3)

18 (2)

16 (2)

12 (2)

11 (2)

6 (2)

5 (2)

17 (1)

15 (1)

110

38

3, 37

none - proven

20 (933)

34 (356)

11 (161)

13 (124)

19 (66)

25 (58)

2 (51)

22 (42)

28 (12)

18 (11)

111

13

2, 7

none - proven

8 (62)

1 (16)

9 (8)

11 (5)

6 (3)

12 (2)

5 (2)

10 (1)

7 (1)

4 (1)

112

2261

5, 13, 113

209, 269, 467, 941, 1292, 1412, 1463, 1499, 1517, 1604, 1613, 1664, 1696, 1937 (k = 1696 at n=1M, other kl at n=6.9K)

1780 (62794)

547 (8124)

953 (6802)

677 (5723)

1920 (5333)

2082 (5308)

1712 (4836)

813 (4616)

8 (4526)

1217 (3872)

113

20

3, 19

17 (8K)

4 (2958)

13 (1336)

19 (50)

18 (47)

8 (47)

16 (40)

12 (4)

3 (4)

1 (4)

15 (2)

114

24

5, 23

none - proven

1 (32)

12 (15)

3 (12)

22 (11)

11 (10)

9 (5)

16 (4)

23 (3)

19 (3)

15 (3)

115

57

2, 29

17, 47 (both at n=8K)

30 (47376)

50 (798)

38 (94)

46 (79)

23 (51)

5 (44)

53 (38)

40 (38)

49 (14)

37 (12)

116

14

3, 13

none - proven

12 (47)

9 (8)

4 (6)

10 (4)

7 (4)

5 (3)

13 (2)

6 (2)

1 (2)

11 (1)

117

119

2, 59

58, 59, 117 (k = 58 at n=250K, k = 59 at n=8K, k = 117 at n=524K)

75 (1428)

11 (1164)

77 (311)

2 (286)

81 (264)

47 (227)

67 (182)

4 (101)

51 (76)

109 (71)

118

50

7, 17

48 (740K)

43 (106)

36 (96)

18 (80)

33 (67)

3 (46)

15 (22)

29 (10)

21 (7)

35 (6)

46 (5)

119

4

3, 5

none - proven

1 (4)

3 (1)

2 (1)

120

unknown

unknown

testing not started

121

27

7, 19, 37

none - proven

23 (102)

24 (72)

7 (6)

17 (5)

10 (5)

2 (5)

25 (4)

21 (4)

19 (4)

16 (4)

122

40

3, 41

1, 34 (k = 1 at n=16.77M, k = 34 at n=735K)

37 (1622)

31 (1236)

16 (764)

2 (755)

25 (674)

23 (389)

17 (371)

4 (358)

5 (135)

28 (108)

123

55

2, 17, 89

1, 3, 41 (k = 1 at n=524K, other k at n=8K)

19 (59)

38 (42)

47 (29)

13 (28)

34 (19)

28 (19)

8 (16)

54 (15)

15 (15)

53 (14)

124

31001

3, 5, 7, 5167

testing not started

125

7

2, 3

All k = m^3 for all n;

factors to:

(m*5^n + 1) *

(m2*25n - m*5^n + 1)

none - proven

4 (2)

3 (2)

6 (1)

5 (1)

2 (1)

k = 1 proven composite by full algebraic factors.

126

766700

13, 19, 127, 829

testing not started

127

6343

2, 5, 17, 137

1, 37, 67, 103, 121, 134, 138, 139, 141, 153, 172, 177, 189, 201, 205, 215, 223, 237, 247, 263, 267, 301, 311, 343, 367, 381, 383, 387, 398, 409, 413, 425, 447, 452, 465, 469, 474, 487, 495, 525, 527, 529, 543, 569, 582, 601, 629, 645, 647, 649, 657, 659, 673, 681, 691, 701, 707, 727, 733, 763, 781, 790, 797, 807, 809, 818, 819, 837, 847, 849, 887, 895, 901, 903, 907, 909, 925, 927, 941, 954, 1011, 1021, 1023, 1043, 1075, 1079, 1103, 1109, 1121, 1123, 1147, 1161, 1165, 1167, 1169, 1173, 1193, 1199, 1201, 1229, 1232, 1237, 1239, 1243, 1244, 1261, 1303, 1309, 1322, 1329, 1343, 1351, 1357, 1362, 1379, 1381, 1383, 1403, 1417, 1423, 1425, 1427, 1431, 1439, 1441, 1461, 1463, 1466, 1472, 1483, 1487, 1494, 1515, 1543, 1544, 1547, 1549, 1553, 1557, 1565, 1574, 1581, 1583, 1603, 1607, 1615, 1621, 1641, 1649, 1686, 1691, 1719, 1723, 1741, 1742, 1747, 1753, 1754, 1765, 1783, 1785, 1793, 1801, 1808, 1815, 1827, 1841, 1849, 1861, 1875, 1887, 1917, 1921, 1954, 1961, 1981, 1987, 1997, 2001, 2022, 2027, 2041, 2055, 2083, 2089, 2109, 2123, 2147, 2152, 2156, 2167, 2177, 2181, 2189, 2211, 2229, 2235, 2241, 2261, 2263, 2265, 2285, 2287, 2330, 2335, 2336, 2341, 2375, 2401, 2403, 2409, 2429, 2441, 2461, 2521, 2523, 2531, 2537, 2551, 2603, 2607, 2625, 2627, 2636, 2649, 2657, 2661, 2687, 2701, 2721, 2729, 2741, 2744, 2749, 2778, 2801, 2803, 2809, 2847, 2861, 2863, 2867, 2869, 2887, 2894, 2907, 2908, 2909, 2915, 2921, 2929, 2949, 2961, 2963, 2977, 2981, 2987, 2988, 2993, 3001, 3005, 3041, 3045, 3061, 3069, 3089, 3093, 3095, 3099, 3107, 3121, 3129, 3133, 3141, 3143, 3169, 3181, 3199, 3209, 3221, 3241, 3243, 3276, 3283, 3297, 3303, 3309, 3313, 3325, 3327, 3329, 3345, 3363, 3377, 3381, 3392, 3401, 3407, 3419, 3421, 3449, 3455, 3461, 3489, 3501, 3521, 3526, 3527, 3533, 3543, 3545, 3549, 3563, 3603, 3641, 3646, 3647, 3703, 3741, 3743, 3747, 3763, 3779, 3790, 3807, 3811, 3812, 3815, 3821, 3823, 3829, 3896, 3923, 3929, 3947, 3981, 3986, 3987, 3995, 3996, 4001, 4007, 4021, 4029, 4031, 4039, 4045, 4063, 4073, 4079, 4081, 4087, 4112, 4125, 4135, 4157, 4164, 4167, 4181, 4185, 4193, 4201, 4207, 4229, 4241, 4247, 4261, 4281, 4289, 4309, 4323, 4327, 4329, 4339, 4364, 4373, 4381, 4382, 4385, 4416, 4421, 4437, 4447, 4455, 4469, 4481, 4503, 4517, 4521, 4527, 4531, 4547, 4573, 4587, 4609, 4614, 4617, 4643, 4645, 4667, 4677, 4684, 4701, 4705, 4742, 4761, 4781, 4809, 4819, 4823, 4829, 4849, 4867, 4887, 4891, 4896, 4909, 4957, 4968, 4969, 4975, 4987, 4995, 5005, 5009, 5016, 5023, 5025, 5041, 5057, 5061, 5067, 5069, 5091, 5101, 5119, 5123, 5149, 5165, 5172, 5187, 5189, 5201, 5205, 5226, 5238, 5247, 5249, 5267, 5273, 5283, 5321, 5327, 5331, 5343, 5347, 5363, 5368, 5379, 5381, 5387, 5391, 5399, 5415, 5429, 5435, 5441, 5443, 5457, 5461, 5469, 5477, 5485, 5487, 5488, 5503, 5507, 5529, 5531, 5534, 5543, 5547, 5549, 5563, 5577, 5583, 5589, 5606, 5609, 5615, 5618, 5619, 5622, 5623, 5627, 5638, 5665, 5668, 5674, 5678, 5687, 5697, 5701, 5707, 5713, 5721, 5723, 5735, 5747, 5761, 5767, 5799, 5807, 5813, 5823, 5837, 5841, 5859, 5861, 5863, 5867, 5887, 5888, 5903, 5923, 5929, 5941, 5955, 5957, 5966, 5981, 5996, 6015, 6021, 6041, 6047, 6048, 6057, 6081, 6085, 6087, 6111, 6114, 6121, 6149, 6209, 6221, 6231, 6237, 6245, 6261, 6269, 6275, 6277 (all at n=1K)

2163 (985)

2837 (982)

6065 (980)

2479 (975)

3525 (972)

365 (968)

5541 (964)

5654 (963)

6129 (950)

2267 (947)

128

44

3, 43

All k = m^7 for all n;

factors to:

(m*2^n + 1) *

(m6*64n - m5*32n + m4*16n - m3*8n + m2*4n - m*2^n + 1)

16, 40 (k = 16 at n=4.908G, k = 40 at n=1.2857M)

41 (39271)

42 (13001)

20 (473)

28 (322)

38 (291)

19 (178)

25 (64)

3 (27)

17 (21)

31 (20)

k = 1 proven composite by full algebraic factors.

k = 8 and 32 have no possible prime.

256

38

3, 7, 13

All k=4*q^4 for all n:

let k=4*q^4

and let m=q*4^n; factors to:

(2*m^2 + 2m + 1) *

(2*m^2 - 2m + 1)

none - proven (with probable primes that have not been certified: k = 11)

11 (5702)

23 (537)

20 (20)

7 (15)

22 (10)

25 (8)

15 (6)

36 (5)

6 (5)

28 (3)

k = 4 proven composite by full algebraic factors.

512

18

5, 13, 19

All k = m^3 for all n;

factors to:

(m*8^n + 1) *

(m2*64n - m*8^n + 1)

2, 4, 5, 16 (k = 2 at n=7.635G, k = 4 at n=62.54T, k = 5 at n=1M, k = 16 at n=1.954T)

12 (23)

14 (21)

7 (20)

11 (9)

9 (7)

10 (6)

17 (3)

13 (2)

3 (2)

15 (1)

k = 1 and 8 proven composite by full algebraic factors.

1024

81

5, 41

All k = m^5 for all n;

factors to:

(m*4^n + 1) *

(m4*256n - m3*64n + m2*16n - m*4^n + 1)

4, 16, 29, 38, 56 (k = 4 at n=858.9M, k = 16 at n=1.717G, other k at n=3K)

44 (1933)

41 (350)

9 (323)

51 (266)

14 (221)

33 (142)

48 (53)

11 (46)

54 (37)

10 (36)

k = 1 and 32 proven composite by full algebraic factors.

Clone this wiki locally