This is the available code for our TMM paper Targeted Attack of Deep Hashing via Prototype-supervised Adversarial Networks.
- Python 3.7.6
- Pytorch 1.6.0
- Numpy 1.18.5
- Pillow 7.1.2
- CUDA 10.2
Initialize the hyper-parameters in hashing.py following the paper, and then run
python hashing.py
Initialize the hyper-parameters in dhta.py following the paper, and then run
python dhta.py
Initialize the hyper-parameters in main.py following the paper, and then run
python main.py --train True
Initialize the hyper-parameters in main.py following the paper, and then run
python main.py --train False --test True
If you find this work is useful, please cite the following:
@article{zhang2021targeted,
title={Targeted Attack of Deep Hashing via Prototype-supervised Adversarial Networks},
author={Zhang, Zheng and Wang, Xunguang and Lu, Guangming and Shen, Fumin and Zhu, Lei},
journal={IEEE Transactions on Multimedia},
year={2021},
publisher={IEEE}
}