Skip to content

This layer integrates TensorFlow to OE/Yocto platform

Notifications You must be signed in to change notification settings

yizhao1/meta-tensorflow

 
 

Repository files navigation

Introduction
-----------
TensorFlow is an open source software library for high performance numerical
computation primarily used in machine learning. Its flexible architecture
allows easy deployment of computation across a variety of types of platforms
(CPUs, GPUs, TPUs), and a range of systems from single desktops to clusters
of servers to mobile and edge devices.
(https://www.tensorflow.org/)

The build system of TensorFlow is Bazel (https://bazel.build/).

This layer integrates TensorFlow to OE/Yocto platform
- Integrate Google's bazel to Yocto
- Add Yocto toolchain for bazel to support cross compiling.
- Replace python package system(pip/wheel) with Yocto package system(rpm/deb/ipk).

Dependencies
------------
URI: git://github.com/openembedded/openembedded-core.git
branch: master
revision: HEAD

URI: git://github.com/openembedded/bitbake.git
branch: master
revision: HEAD

URI: git://github.com/openembedded/meta-openembedded.git
layers: meta-python, meta-oe
branch: master
revision: HEAD

URI: git://git.yoctoproject.org/meta-java
branch: master
revision: HEAD

Source code
-----------
https://github.com/hongxu-jia/meta-tensorflow.git
or
git://git.yoctoproject.org/meta-tensorflow

Maintenance
-----------
Maintainers: Hongxu Jia <[email protected]> | <[email protected]>

Contributing
-----------
Contributions and patches can be sent to the Yocto Project mailing
list: [email protected]"

When sending patches please take a look at the contribution guide available
here: https://wiki.yoctoproject.org/wiki/Contribution_Guidelines

example:
git send-email -1 -M --to [email protected]  --subject-prefix=meta-tensorflow][PATCH

Limitation
-----------
- Bazel build takes lots of time, since it like bitbake which has own rules and builds
  everything from scratch. Currently bazel could not reuse Yocto DEPENDS/RDEPENDS.

- Do not support offline build since bazel build system require fetches archive
  tarballs through network.

- In order to run tensorflow cases in a reasonable time, although it builds
  successfully on qemuarm, qemuarm64, qemumips, qemumips64, qemux86 and qemux86-64,
  only qemux86-64 with kvm for runtime test.

- Do not support 32-bit powerpc (qemuppc) since BoringSSL does not support it.
  (BoringSSL is a fork of OpenSSL used to implement cryptography and TLS across
  most of Google's products)

Future plan
-----------
- Support offline build which bazel build system fetches archive tarballs
  from Yocto download mirror.

- Introduce more machine learning cases to meta-tensorflow.

- Recipe maintenance and upgrade

Build and run
-----------
1. Clone away
$ mkdir <ts-project>
$ cd <ts-project>
$ git clone git://git.yoctoproject.org/meta-tensorflow
$ git clone git://git.yoctoproject.org/meta-java
$ git clone git://git.openembedded.org/meta-openembedded
$ git clone git://git.openembedded.org/openembedded-core oe-core
$ cd oe-core
$ git clone git://git.openembedded.org/bitbake

2. Prepare build
$ . <ts-project>/oe-core/oe-init-build-env <build>

# Build qemux86-64 which runqemu supports kvm.
$ echo 'MACHINE = "qemux86-64"' >> conf/local.conf

$ echo 'IMAGE_INSTALL_append = " tensorflow"' >> conf/local.conf

Edit conf/bblayers.conf to include other layers
BBLAYERS ?= " \
    <ts-project>/oe-core/meta \
    <ts-project>/meta-openembedded/meta-python \
    <ts-project>/meta-openembedded/meta-oe \
    <ts-project>/meta-java \
    <ts-project>/meta-tensorflow \
"


3. Build image in <build>.
$ bitbake core-image-minimal

4. Start qemu with slrip + kvm + 5GB memory:
$ runqemu qemux86-64 core-image-minimal slirp kvm qemuparams="-m 5120"

5. Verify the install
root@qemux86-64:~# python3 -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
tf.Tensor(-604.65454, shape=(), dtype=float32)

6. Run tutorial case
https://www.tensorflow.org/tutorials

root@qemux86-64:~# cat >code.py <<ENDOF
import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
ENDOF

root@qemux86-64:~# python3 ./code.py
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
11493376/11490434 [==============================] - 7s 1us/step
Instructions for updating:
Colocations handled automatically by placer.
Instructions for updating:
Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.
Epoch 1/5
60000/60000 [==============================] - 27s 449us/sample - loss: 0.2211 - acc: 0.9346
Epoch 2/5
60000/60000 [==============================] - 24s 408us/sample - loss: 0.0969 - acc: 0.9702
Epoch 3/5
60000/60000 [==============================] - 26s 439us/sample - loss: 0.0694 - acc: 0.9780
Epoch 4/5
60000/60000 [==============================] - 23s 390us/sample - loss: 0.0540 - acc: 0.9832
Epoch 5/5
60000/60000 [==============================] - 24s 399us/sample - loss: 0.0447 - acc: 0.9851
10000/10000 [==============================] - 1s 91us/sample - loss: 0.0700 - acc: 0.9782

7. TensorFlow/TensorFlow Lite C++ Image Recognition Demo

root@qemux86-64:~# time label_image
2019-03-06 06:08:51.076028: I tensorflow/examples/label_image/main.cc:251] military uniform (653): 0.834306
2019-03-06 06:08:51.078221: I tensorflow/examples/label_image/main.cc:251] mortarboard (668): 0.0218695
2019-03-06 06:08:51.080054: I tensorflow/examples/label_image/main.cc:251] academic gown (401): 0.010358
2019-03-06 06:08:51.081943: I tensorflow/examples/label_image/main.cc:251] pickelhaube (716): 0.00800814
2019-03-06 06:08:51.083830: I tensorflow/examples/label_image/main.cc:251] bulletproof vest (466): 0.00535084
real	0m 10.50s
user	0m 3.95s
sys	0m 6.46s
root@qemux86-64:~# time label_image.lite
Loaded model /usr/share/label_image/mobilenet_v1_1.0_224_quant.tflite
resolved reporter
invoked
average time: 1064.8 ms
0.780392: 653 military uniform
0.105882: 907 Windsor tie
0.0156863: 458 bow tie
0.0117647: 466 bulletproof vest
0.00784314: 835 suit
real	0m 1.10s
user	0m 1.07s
sys	0m 0.02s

License
-------

All metadata is MIT licensed unless otherwise stated. Source code included
in tree for individual recipes is under the LICENSE stated in each recipe
(.bb file) unless otherwise stated.

About

This layer integrates TensorFlow to OE/Yocto platform

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • BitBake 40.8%
  • Python 22.8%
  • Smarty 15.2%
  • PHP 11.1%
  • Shell 9.0%
  • Assembly 1.1%