Skip to content

zju-bmi-lab/spiking-deep-residual-networks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

53 Commits
 
 
 
 

Repository files navigation

Spiking Deep Residual Networks

This repo holds the codes for Spiking Deep Residual Networks.

Dependencies

How to use

MNISTS

  • Train ANN models
    run matconvnet/examples/mnist/mytrans_mnist_beta.m
  • Find activations for weight normalization.
    run matconvnet/examples/mnist/find_activation_single_gpu.m
  • Conversion and test.
    run matconvnet/examples/mnist/ann2snn.m

CIFAR-10

  • Train ANN models
    run matconvnet/examples/cifar10/mytrans_mnist_beta.m
  • Find activations for weight normalization.
    run matconvnet/examples/cifar10/find_activation_single_gpu.m
  • Conversion and test.
    run matconvnet/examples/cifar10/ann2snn.m

CIFAR-100

  • Train ANN models
    run matconvnet/examples/cifar100/mytrans_mnist_beta.m
  • Find activations for weight normalization.
    run matconvnet/examples/cifar100/find_activation_single_gpu.m
  • Conversion and test.
    run matconvnet/examples/cifar100/ann2snn.m

ImageNet

  • Use pre-trained ANN models from this link.
  • Find activations for weight normalization.
    run matconvnet/examples/imagenet/find_activations_single_pt.m
  • Conversion and test.
    run matconvnet/examples/imagenet ann2snn_res18_centre_pt.m

About

Spiking Deep Residual Networks

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages