This repo holds the codes for Spiking Deep Residual Networks.
- MATLAB
- MatConvNet
- Installing and compiling MatConvNet
- Merge the matconvnet directory with installed MatConvNet library.
- Train ANN models
run matconvnet/examples/mnist/mytrans_mnist_beta.m - Find activations for weight normalization.
run matconvnet/examples/mnist/find_activation_single_gpu.m - Conversion and test.
run matconvnet/examples/mnist/ann2snn.m
- Train ANN models
run matconvnet/examples/cifar10/mytrans_mnist_beta.m - Find activations for weight normalization.
run matconvnet/examples/cifar10/find_activation_single_gpu.m - Conversion and test.
run matconvnet/examples/cifar10/ann2snn.m
- Train ANN models
run matconvnet/examples/cifar100/mytrans_mnist_beta.m - Find activations for weight normalization.
run matconvnet/examples/cifar100/find_activation_single_gpu.m - Conversion and test.
run matconvnet/examples/cifar100/ann2snn.m
- Use pre-trained ANN models from this link.
- Find activations for weight normalization.
run matconvnet/examples/imagenet/find_activations_single_pt.m - Conversion and test.
run matconvnet/examples/imagenet ann2snn_res18_centre_pt.m