This capsule calculates dff
function from aind-ophys-utils, which executes the following steps:
- Estimate the noise standard deviation
$\sigma$ and initial baseline$b$ - Mask active frames, i.e. outliers where
$F > b + 3\sigma$ - Obtain
$F_0$ by median-filtering the trace using only inactive frames and interpolation - Calculate
$\Delta F/F = (F - F_0) / F_0$
All parameters are passed to dff.py using python dff.py [parameters]
.
All parameters are defined in main using argparse. The most important one is
'input-dir' which should point to a directory containing an HDF5 file extraction.h5
with the dataset 'traces/corrected', a 2D array
of neuropil-corrected traces for each ROI.
The main output is the dff.h5
file.
It contains 4 datasets:
data
: Baseline-corrected fluorescence traces
baseline
: Estimated baselines
noise
: Estimated standard deviation of the noise in the input traces
skewness
: The skewness of the