Skip to content

Commit

Permalink
minor edits
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed Jul 16, 2024
1 parent 21c0005 commit 133a3ef
Showing 1 changed file with 75 additions and 60 deletions.
135 changes: 75 additions & 60 deletions theories/absolute_continuity.v
Original file line number Diff line number Diff line change
Expand Up @@ -1709,8 +1709,10 @@ exists U_, Z; split.
exact: subIsetl.
by rewrite (le_lt_trans (mueS0E _))// ltry.
+ move=> i.
admit.
+ admit.
apply: measurableD.
by apply: open_measurable.
admit. (* measurable E *)
+ admit. (* measurable E *)
+ move=> m n mn.
apply/subsetPset; apply: setSD => x H k h.
apply: H => //.
Expand Down Expand Up @@ -1775,6 +1777,7 @@ Fail Lemma lusinN_total_variation a b f : abs_contN a b f ->

Lemma abs_contN_dominates a b (f : cumulative R) : abs_contN a b f ->
mu `<< lebesgue_stieltjes_measure f.
Proof.
Abort.

Fail Lemma differentiable_lusinN a b f : {in `]a, b[%classic, differentiable f} ->
Expand Down Expand Up @@ -3081,51 +3084,6 @@ Qed.
(* admit. *)
(* by apply: sub_Rhullr. *)

(* a wlog part in image_measure0_Lusin *)
Lemma image_measure0_Lusin'
(f : R -> R)
(cf : {within `[a, b], continuous f})
(ndf : {in `[a, b] &, {homo f : x y / x <= y}})
(HZ : forall Z : set R,
Z `<=` `[a, b] -> compact Z -> mu Z = 0 -> mu [set f x | x in Z] = 0)
(Z : set R)
(Zab : Z `<=` `[a, b])
(mZ : (((wlength idfun)^*)%mu).-cara.-measurable Z)
(muZ0 : mu Z = 0)
(muFZ0 : (0%R < mu [set f x | x in Z])%E)
(GdeltaZ : Gdelta Z) : False.
Proof.
(* lemma *)
have ndf' : {in `[a, b]%classic &, {homo f : n m / n <= m}}.
move=> x y.
rewrite !inE/= => xab yab.
exact: ndf.
have mfZ : measurable (f @` Z).
have set_fun_f : set_fun `[a, b] [set: R] f by [].
pose Hf := isFun.Build R R `[a, b]%classic [set: R] f set_fun_f.
pose F : {fun `[a, b] >-> [set: R]} := HB.pack f Hf.
simpl in F.
have := @measurable_image_delta_set_nondecreasing_fun R a b F ab ndf cf Z.
apply => //.
admit. (* ?! *)
have mfZ_gt0 : (0 < mu (f @` Z))%E.
done.
have [K [cK KfZ muK]] : exists K, [/\ compact K, K `<=` f @` Z & (0 < mu K)%E].
have /= := lebesgue_regularity_inner mfZ.
admit.
pose K1 := (f @^-1` K) `&` `[a, b].
have cK1 : compact K1.
(* using continuity, continuous_compact? *)
admit.
have K1ab : K1 `<=` `[a, b].
admit.
have K1Z : K1 `<=` Z.
admit.
have fK1K : f @` K1 = K.
admit.
have := HZ K1 K1ab cK1.
Admitted.

(* lemma3 (converse) *)
Lemma image_measure0_Lusin (f : R -> R) :
{within `[a, b], continuous f} ->
Expand All @@ -3139,13 +3097,42 @@ Proof.
move=> cf ndf HZ; apply: contrapT.
move=> /existsNP[Z]/not_implyP[Zab/=] /not_implyP[mZ] /not_implyP[muZ0].
move=> /eqP; rewrite neq_lt ltNge measure_ge0/= => muFZ0.
have lmZ : lebesgue_measurability Z.
wlog : Z Zab mZ muZ0 muFZ0 / Gdelta Z.
move=> wlg.
have [Z1 [gdZ1 mZ10 ZZ1]] : exists Z1, [/\ Gdelta Z1, mu Z1 = 0 & Z `<=` Z1].
admit.
have mFZ1 : (0 < (((wlength idfun)^*)%mu) (f @` Z1))%E.
admit.
apply: (wlg Z1) => //.
admit.
admit.
move=> gdZ.
have mFZ : measurable (f @` Z).
admit.
have muF0_gt0 : (0 < mu (f @` Z))%E.
admit.
have [K [cK KfZ muK]] : exists K, [/\ compact K, K `<=` f @` Z & (0 < mu K)%E].
(* have /= := lebesgue_regularity_inner mfZ.*)
admit.
pose K1 := (f @^-1` K) `&` `[a, b].
have cK1 : compact K1.
(* using continuity, continuous_compact? *)
admit.
have K1ab : K1 `<=` `[a, b].
admit.
have K1Z : K1 `<=` Z.
admit.
have fK1K : f @` K1 = K.
admit.
have := HZ K1 K1ab cK1.
rewrite fK1K.
(*have lmZ : lebesgue_measurability Z.
move=> e e0.
have [U [oU ZU /andP[muZU muUZe]]] := outer_regularity_outer0 Z e0.
exists U; split => //.
rewrite -(@leeD2lE _ (((wlength idfun)^*)%mu (U `&` Z))); last first.
rewrite -(@leeD2lE _ (((wlength idfun)^* )%mu (U `&` Z))); last first.
rewrite ge0_fin_numE; last exact: outer_measure_ge0.
apply: (@le_lt_trans _ _ (((wlength idfun)^*)%mu `[a, b]%classic)).
apply: (@le_lt_trans _ _ (((wlength idfun)^* )%mu `[a, b]%classic)).
apply: le_outer_measure.
by rewrite setIidr.
rewrite [ltLHS](_:_= lebesgue_measure `[a, b]%classic); last by [].
Expand All @@ -3168,7 +3155,7 @@ apply.
exact: open_measurable.
- admit.
- admit.
- by exists H.
- by exists H.*)
Admitted.

End lemma3.
Expand Down Expand Up @@ -3224,17 +3211,45 @@ Lemma Lusin_total_variation (f : R -> R) :
lusinN `[a, b] (fun x => fine (total_variation a ^~ f x)).
Proof.
move=> cf bvf lf.
have ndt := @total_variation_nondecreasing R a b f.
have ct := total_variation_continuous ab cf bvf.
apply: image_measure0_Lusin => //.
apply: contrapT.
move=> H.
pose H := fun x => fine (total_variation a ^~ f x).
have ndt : {in `[a, b] &, nondecreasing_fun H}.
move=> x y xab yab xy.
have axyf := @total_variation_nondecreasing R a b f _ _ xab yab xy.
rewrite /H fine_le//.
- apply/bounded_variationP => //.
by move: xab; rewrite in_itv/= => /andP[].
move: xab; rewrite in_itv/= => /andP[? ?].
by move: bvf; apply: bounded_variationl.
- apply/bounded_variationP => //.
by move: yab; rewrite in_itv/= => /andP[].
move: yab; rewrite in_itv/= => /andP[? ?].
by move: bvf; apply: bounded_variationl.
have cH : {within `[a, b], continuous H}.
exact: total_variation_continuous.
apply: contrapT => ababsurdo.
have := image_measure0_Lusin ab cH ndt.
move/contra_not => /(_ ababsurdo).
move/existsNP => [Z /not_implyP [Zab /not_implyP[cZ /not_implyP[muZ0]]]].
move/eqP; rewrite neq_lt ltNge measure_ge0/= => muHZ_gt0.
have compactH : compact (H @` Z).
have := @continuous_compact _ _ H Z.
apply.
apply: continuous_subspaceW.
exact: Zab.
assumption.
exact: cZ.
pose c : R := inf Z.
pose d : R := sup Z.
wlog : Z Zab cZ muZ0 muHZ_gt0 compactH c d / perfect_set Z.
admit.
move=> perfectZ.

pose TV := (fine \o (total_variation a)^~ f).
have : exists n : nat, (0 < n)%N /\ exists Z_ : `I_ n -> interval R, trivIset setT (fun i => [set` (Z_ i)])
/\ (0 < mu (TV @` (\bigcup_i [set` Z_ i])))%E
/\ forall i, [/\ [set` Z_ i] `<=` `[a, b], compact [set` Z_ i] & mu [set` Z_ i] = 0].
admit.
move=> [n [] n0 [Z_]] [trivZ [Uz0]] /all_and3 [Zab cZ Z0].
move=> [n [] n0 [Z_]] [trivZ [Uz0]] /all_and3 [Zab' cZ' Z0].
pose UZ := \bigcup_i [set` Z_ i].
have UZ_not_empty : UZ !=set0.
admit.
Expand Down Expand Up @@ -3964,15 +3979,15 @@ Theorem Banach_Zarecki (f : R -> R) :
abs_cont a b f.
Proof.
move=> cf bvf Lf.
apply: total_variation_AC => //.
apply: Banach_Zarecki_nondecreasing => //.
apply: total_variation_AC => //. (* lemma 8 *)
apply: Banach_Zarecki_nondecreasing => //. (* lemma 7 *)
- exact: total_variation_continuous.
- move=> x y; rewrite !in_itv /= => /andP[ax xb] /andP[ay yb] xy.
apply: fine_le.
+ apply/(bounded_variationP _ ax); exact:(bounded_variationl _ xb).
+ apply/(bounded_variationP _ ay); exact:(bounded_variationl _ yb).
+ by apply: (@total_variation_nondecreasing _ _ b); rewrite ?in_itv /= ?ax ?ay.
- exact: Lusin_total_variation.
- exact: Lusin_total_variation. (* lemma 6 *)
Qed.

End banach_zarecki.

0 comments on commit 133a3ef

Please sign in to comment.